Skip to main content
Log in

The Maximum Lq-Likelihood Method: An Application to Extreme Quantile Estimation in Finance

  • Published:
Methodology and Computing in Applied Probability Aims and scope Submit manuscript

Abstract

Estimating financial risk is a critical issue for banks and insurance companies. Recently, quantile estimation based on extreme value theory (EVT) has found a successful domain of application in such a context, outperforming other methods. Given a parametric model provided by EVT, a natural approach is maximum likelihood estimation. Although the resulting estimator is asymptotically efficient, often the number of observations available to estimate the parameters of the EVT models is too small to make the large sample property trustworthy. In this paper, we study a new estimator of the parameters, the maximum Lq-likelihood estimator (MLqE), introduced by Ferrari and Yang (Estimation of tail probability via the maximum Lq-likelihood method, Technical Report 659, School of Statistics, University of Minnesota, 2007 http//:www.stat.umn.edu/~dferrari/research/techrep659.pdf). We show that the MLqE outperforms the standard MLE, when estimating tail probabilities and quantiles of the generalized extreme value (GEV) and the generalized Pareto (GP) distributions. First, we assess the relative efficiency between the MLqE and the MLE for various sample sizes, using Monte Carlo simulations. Second, we analyze the performance of the MLqE for extreme quantile estimation using real-world financial data. The MLqE is characterized by a distortion parameter q and extends the traditional log-likelihood maximization procedure. When q→1, the new estimator approaches the traditional maximum likelihood estimator (MLE), recovering its desirable asymptotic properties; when q ≠ 1 and the sample size is moderate or small, the MLqE successfully trades bias for variance, resulting in an overall gain in terms of accuracy (mean squared error).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • P. Artzner, F. Delbaen, J. M. Eber, and D. Heath, “Coherent measures of risk,” Mathematical Finance vol. 9 pp. 203–228, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • A. A. Balkema and L. de Haan, “Residual life time at great age,” The Annals of Probability vol. 2 pp. 792–804, 1974.

    Article  MATH  Google Scholar 

  • C. Brooks, J. Clare, J. Dalla Molle, and G. Persand, “A comparison of extreme value theory approaches for determining value at risk,” Journal of Empirical Finance vol. 22 pp. 1–22, 2005.

    Google Scholar 

  • E. Castillo, J. María, and A. S. Hadi, “Fitting continuous bivariate distributions to data,” The Statistician: Journal of the Institute of Statisticians vol. 46 pp. 355–369, 1997.

    Google Scholar 

  • R. Cont, “Empirical properties of asset returns: stylized facts and statistical issues,” Quantitative Finance vol. 1(2) pp. 223–236, 2001.

    Article  Google Scholar 

  • P. Embrechts, C. Kluppelberg, and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Applications of Mathematics, Springer, 1997.

  • T. S. Ferguson, A Course in Large Sample Theory, Chapman & Hall Ltd, 1996.

  • D. Ferrari and Y. Yang, “Estimation of tail probability via the maximum Lq-likelihood method,” Technical Report 659, School of Statistics, University of Minnesota, 2007. http://www.stat.umn.edu/~dferrari/research/techrep659.pdf.

  • R. Fisher and L. C. Tippett, “Limiting forms of the frequency distribution of largest or smallest member of a sample,” Proceedings of the Cambridge philosophical society vol. 24 pp. 180–190, 1928.

    Article  MATH  Google Scholar 

  • M. Gell-Mann (ed.), Nonextensive Entropy, Interdisciplinary Applications, Oxford University Press: New York, 2004.

    MATH  Google Scholar 

  • M. Gilli and E. Kellezi, “An application of extreme value theory for measuring financial risk,” Computational Economics vol. 2–3 pp. 207–228, 2006.

    Article  Google Scholar 

  • G. H. Givens and J. A. Hoeting, Computational Statistics, Wiley: New Jersey, 2005.

    MATH  Google Scholar 

  • B. V. Gnedenko, “Sur la distribution limite du terme d’une serie aleatoire,” Annals of Mathematics vol. 44 pp. 423–453, 1943.

    Article  MathSciNet  Google Scholar 

  • S. D. Grimshaw, “Computing maximum likelihood estimates for the generalized Pareto distribution,” Technometrics vol. 35 pp. 185–191, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction: With 200 Full-color Illustrations, Springer-Verlag Inc., 2001.

  • J. Havrda and F. Charvát, “Quantification method of classification processes: Concept of structural entropy,” Kibernetika vol. 3 pp. 30–35, 1967.

    MATH  Google Scholar 

  • J. R. M. Hosking and J. R. Wallis, “Parameter and quantile estimation for the generalized Pareto distribution,” Technometrics vol. 29 pp. 339–349, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  • P. J. Huber, Robust Statistics, Wiley Series in Probability, John Wiley and Sons, 1981.

  • A. F. Jenkinson, “The frequency distribution of the annual maximum (minimum) values of meteorological events,” Quarterly Journal of the Royal Meteorological Society vol. 81 pp. 158–172, 1955.

    Article  Google Scholar 

  • J. Knight, S. Satchell, and G. Wang, “Quantitative finance,” vol. 3 pp. 332–344, 2005.

  • K. Kuester, S. Mittnik, and M. Paolella, “Value-at-risk prediction: A comparison of alternative strategies,” Journal of Financial Econometrics vol. 4(1) pp. 53–89, 2006.

    Article  Google Scholar 

  • N. A. Lazar, Statistics of Extremes: Theory and Applications, Wiley: England, 2004.

    Google Scholar 

  • A. McNeil and R. Frey, “Estimation of tail-related risk measures for heteroskedastic financial time series: an extreme value approach,” Journal of Empirical Finance vol. 7 pp. 271–300, 2000.

    Article  Google Scholar 

  • A. McNeil and A. Stephenson, evir: Extreme Values in R, 2007. http://www.maths.lancs.ac.uk/~stephena/. R package version 1.5. S original (EVIS) by Alexander McNeil and R port by Alec Stephenson.

  • A. McNeil, R. Frey, and P. Embrechts, Quantitative Risk Management: Concepts, Techniques and Tools, Princeton Series in Finance: New Jersey, 2005.

    MATH  Google Scholar 

  • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2006. http://www.R-project.org.

    Google Scholar 

  • R. Reiss and M. Thomas, Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields, Birkhauser Verlag: Basel, 1997.

    MATH  Google Scholar 

  • M. A. Ribatet, A users guide to the pot package (version 1.0), 2006. http://cran.r-project.org.

  • A. van der Vaart, Asymptotic Statistics, Cambridge University Press: New York, 1998.

    MATH  Google Scholar 

  • R. von Mises, La distribution de la plus grande de n valeurs, in selected papers, volume II, vol. 44 of American Mathematical Society, Providence, RI, 1954.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, D., Paterlini, S. The Maximum Lq-Likelihood Method: An Application to Extreme Quantile Estimation in Finance. Methodol Comput Appl Probab 11, 3–19 (2009). https://doi.org/10.1007/s11009-007-9063-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11009-007-9063-1

Keywords

AMS 2000 Subject Classification

Navigation