Skip to main content
Log in

Study of the Mechanism of Interaction of Oligonucleotides with the 3′-Terminal Region of tRNAPhe by Computer Modeling

  • Structural and Functional Analysis of Biopolymers and Their Complexes
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Three-dimensional atomic models of complexes between yeast tRNAPhe and 10- or 15-mer oligonucleotides complementary to the 3′-terminal tRNA sequence have been constructed using computer modeling. It has been found that rapidly formed primary complexes appear when an oligonucleotide binds to the coaxial acceptor and T stems of the tRNAPhe along the major groove, which results in the formation of a triplex. Long stems allow the formation of a sufficiently strong complex with the oligonucleotide, which delivers its 3′-terminal nucleotides to the vicinity of the T loop adjoining the stem. These nucleotides destabilize the loop structure and initiate conformational rearrangements involving local tRNAPhe destruction and formation of the final tRNAPhe-oligonucleotide complementary complex. The primary complex formation and the following tRNAPhe destruction constitute the “molecular wedge” mechanism. An effective antisence oligonucleotide should consist of three segments—(1) complex initiator, (2) primary complex stabilizer, and (3) loop destructor—and be complementary to the (free end)/loop-stem-loop tRNA structural element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Branch A.D. 1998. A good antisense molecule is hard to find. Trends Biochem. Sci. 23, 45–50.

    Article  PubMed  CAS  Google Scholar 

  2. Mathews D.H., Burkard M.E., Frier S.M., Wyatt J.R. Turner D.H. 1999. Predicting oligonucleotide affinity to nucleic acid targets. RNA. 5, 1458–1469.

    Article  PubMed  CAS  Google Scholar 

  3. Petyuk V.A., Zenkova M.A., Giedge R., Vlasov V.V. 1999. Hybridization of antisense oligonucleotides with 3′ part of tRNAphe. FEBS Lett. 444, 217–221.

    Article  PubMed  CAS  Google Scholar 

  4. Petyuk V.A., Giedge R., Vlasov V.V., Zenkova M.A. 2000. Mechanism of oligonucleotide hybridization with the 3′-terminal region of yeast tRNAPhe. Mol. Biol. 234, 879–886.

    Google Scholar 

  5. Frenkel D., Smith B. 1996. Understanding Molecular Simulation. From Algorithms to Applications. Oxford: Academic Press.

    Google Scholar 

  6. Schlick T. 2000. Molecular Modeling and Simulations: An Interdisciplinary Guide. N.Y.: Springer.

    Google Scholar 

  7. AMBER Home page: http://www.amber.ucsf.edu/amber/index.html.

  8. GROMOS96 Home page: http://www.igc.ethz.ch/gromos/.

  9. Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. 1995. A second generation force field for simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 117, 5179–5197.

    Article  CAS  Google Scholar 

  10. Lazaridis T., Karplus M. 1999. Effective energy function for protein in solution. Proteins. 35, 133–152.

    Article  PubMed  CAS  Google Scholar 

  11. Park B., Levitt M. 1996. Energy functions that discriminate X-ray and near native folds from well constructed decoys. J. Mol. Biol. 258, 367–392; http://dd.stanford.edu.

    Article  PubMed  CAS  Google Scholar 

  12. Zanger W. 1987. Principles of Structural Organization of Nucleic Acids [Russian translation]. Moscow: Mir.

    Google Scholar 

  13. Leontis N.B., Stombaugh J., Westhof E. 2002. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30, 3497–3531.

    Article  PubMed  CAS  Google Scholar 

  14. Cantor C.R., Schimmel P.R. 1980. Biophysical Chemistry: III. The Behavior of Biological Macromolecules. San Francisco: W. H. Freeman.

    Google Scholar 

  15. Sugimoto N., Nakano S., Katoh M., Matsumura A., Nakamura H., Ohmichi T., Yoneyama M., Sasaki M. 1995. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry. 34, 11 211–11 216.

    Article  CAS  Google Scholar 

  16. Alberti P., Arimondo P.B., Mergny J., Garestier T. Helene C., Sun J.-S. 2002. A directional-zipping mechanism for triple helix formation. Nucleic Acids Res. 30, 5407–5415.

    Article  PubMed  CAS  Google Scholar 

  17. Zurkin V.B., Raghunathan G., Ulyanov N.B., Jernigan R.L. 1994. A parallel DNA triplex as model for the intermediate in homologous recombination. J. Mol. Biol. 239, 181–200.

    Google Scholar 

  18. Shchyolkina A.K., Borisova O.F. 1997. Stabilizing and destabilizing effects of intercalators on DNA triplexes. FEBS Lett. 419, 27–31.

    Article  PubMed  CAS  Google Scholar 

  19. Gilson M.K., Given, J.A., Bush B.L., McCammon J.A. 1997. The statistical-thermodynamic basis for computation of binding affinities: A critical review. Biophys. J. 72, 1047–1069.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 5, 2005, pp. 887–895.

Original Russian Text Copyright © 2005 by Vorobjev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorobjev, Y.N. Study of the Mechanism of Interaction of Oligonucleotides with the 3′-Terminal Region of tRNAPhe by Computer Modeling. Mol Biol 39, 777–784 (2005). https://doi.org/10.1007/s11008-005-0093-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0093-x

Key words

Navigation