Skip to main content
Log in

Molecular Mechanisms of Germ Line Cell Determination in Animals

  • Review and Experimantal Articles
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The principles of the formation of germ line cells are reviewed. Germ line cells are separated from other embryonic cells during early embryogenesis. In some groups of animals, germ cell precursors are induced by surrounding cells. In most taxa, however, cells that have inherited certain maternal determinants (the so-called germ plasm) become primordial germ cells. Germ plasm usually contains mitochondria, electron-dense granules with complex structure, and maternal proteins and RNAs necessary to form germ line cells. In Xenopus, the mitochondrial cloud is the source of material for germ plasm; it also specifically binds maternal RNAs involved in the formation of primordial germ cells and transports them to the vegetal pole. The cis-acting elements that are responsible for the transport of these RNAs are usually located in the 3′-untranslated region of RNA, and their function is mediated by binding with trans-acting protein factors. In addition to specific localization of macromolecules in germ plasm, the special status of germ line cells is ensured by degradation of RNA and the protein components of germ plasm in somatic cells, total suppression of transcription in primordial germ line cells until advanced stages of embryogenesis, and specific regulation of RNA translation in somatic and germ line cells. Experimental data on the characteristics of the germes maternal RNA, which is a novel component of the Xenopus germ plasm, and the protein that it encodes are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ginsburg M., Snow M.H., McLaren A. 1990. Primordial germ cells in the mouse embryo during gastrulation. Development. 110, 521–528.

    PubMed  Google Scholar 

  2. Zernicka-Goetz M. 1998. Fertile offspring derived from mammalian eggs lacking either animal or vegetal poles. Development. 125, 4803–4808.

    PubMed  Google Scholar 

  3. Kelly S.J. 1977. Studies of the developmental potential of 4-and 8-cell stage mouse blastomeres. J. Exp. Zool. 200, 365–376.

    Article  PubMed  Google Scholar 

  4. Lawson K.A., Hage W.J. 1994. Clonal analysis of the origin of primordial germ cells in the mouse. CIBA Found. Symp. 182, 68–84.

    PubMed  Google Scholar 

  5. Tam P.P., Zhou S.X. 1996. The allocation of epiblast cells to ectodermal and germ line lineages is influenced by the position of the cells in the gastrulating mouse embryo. Dev. Biol. 178, 124–134.

    Article  PubMed  Google Scholar 

  6. Lawson K.A., Dunn N.R., Roelen B.A., Zeinstra L.M., Davis A.M., Wright C.V., Korving J.P., Hogan B.L. 1999. Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev. 13, 424–436.

    PubMed  Google Scholar 

  7. Ying Y., Liu X.M., Marble A., Lawson K.A., Zhao G.Q. 2000. Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol. Endocrinol. 14, 1053–1063.

    Article  PubMed  Google Scholar 

  8. Hogan B.L. 1996. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580–1594.

    PubMed  Google Scholar 

  9. Massague J., Chen Y.G. 2000. Controlling TGF-β signaling. Genes Dev. 14, 627–644.

    PubMed  Google Scholar 

  10. Ying Y., Qi X., Zhao G.Q. 2001. Induction of primordial germ cells from murine epiblasts by synergetic action of Bmp4 and Bmp8b signaling pathways. Proc. Natl. Acad. Sci. USA. 98, 7858–7862.

    Article  PubMed  Google Scholar 

  11. Ying Y., Zhao G.Q. 2001. Cooperation of endoderm-derived Bmp2 and extraembryonic ectoderm-derived Bmp4 in primordial germ cell generation in the mouse. Dev. Biol. 232, 484–492.

    Article  PubMed  Google Scholar 

  12. Zhao G.Q., Garbers D.L. 2002. Male germ cell specification and differentiation. Dev. Cell. 2, 537–547.

    Article  PubMed  Google Scholar 

  13. Heldin C.H., Miyazono K., ten Dijke P. 1997. TGF-β signaling from cell membrane to nucleus through SMAD proteins. Nature. 390, 465–471.

    Article  PubMed  Google Scholar 

  14. Tremblay K.D., Dunn N.R., Robertson E.J. 2001. Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development. 128, 3609–3621.

    PubMed  Google Scholar 

  15. Chang H., Matzuk M.M. 2001. Smad5 is required for mouse primordial germ cell development. Mech. Dev. 104, 61–67.

    Article  PubMed  Google Scholar 

  16. Eisenstaedt T.B. 1975. Modern views on germ cell line determinants. Ontogenez. 6, 427–441.

    PubMed  Google Scholar 

  17. Illmensee K., Mahowald A.P. 1976. The autonomous function of germ plasm in a somatic region of the Drosophila egg. Exp. Cell Res. 97, 127–140.

    Article  PubMed  Google Scholar 

  18. Ephrussy A., Lehmann R. 1992. Induction of germ cell formation by oskar. Nature. 358, 387–392.

    Google Scholar 

  19. Wylie C.C., Holwill S., O’Driscoll M., Snape A., Heasman J. 1985. Germ plasm and germ cell determination in Xenopus laevis as studied by cell transplantation analysis. Cold Spring Harbor Symp. Quant. Biol. 50, 37–43.

    PubMed  Google Scholar 

  20. Braat A.K., Zandbergen T., van de Water S., Goos H.J., Zivkovic D. 1999. Characterization of zebrafish primordial germ cells: Morphology and early distribution of vasa RNA. Dev. Dyn. 216, 153–167.

    Article  PubMed  Google Scholar 

  21. Tsunekawa N., Naito M., Sakai Y., Nishida T., Noce T. 2000. Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development. 127, 2741–2750.

    PubMed  Google Scholar 

  22. Ukeshima A., Fujimoto T. 1991. A fine morphological study of germ cells in asymmetrically developing right and left ovaries of the chick. Anat. Rec. 230, 378–386.

    Article  PubMed  Google Scholar 

  23. Palacios I.M., St. Johnston D. 2001. Getting the message across: The Intracellular localization of mRNAs in higher eukaryotes. Ann. Rev. Cell. Dev. Biol. 17, 569–614.

    Article  Google Scholar 

  24. Zhou Y., King M.L. 2004. Sending RNAs into the Future: RNA localization and germ cell fate. IUBMB Life. 56, 19–27.

    PubMed  Google Scholar 

  25. Heasman J., Quarmby J., Wylie C.C. 1984. The mitochondrial cloud of Xenopus oocytes: The source of germinal granule material. Dev. Biol. 105, 458–469.

    Article  PubMed  Google Scholar 

  26. Kloc M., Etkin L.D. 1995. Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes. Development. 121, 287–297.

    PubMed  Google Scholar 

  27. Kloc M., Larabell C., Etkin L.D. 1996. Elaboration of the messenger transport organizer pathway for localization of RNA to the vegetal cortex of Xenopus oocytes. Dev. Biol. 180, 119–130.

    Article  PubMed  Google Scholar 

  28. Mosquera L., Forristall C., Zhou Y., King M.L. 1993. A mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with a nanos-like zinc finger. Development. 117, 377–386.

    PubMed  Google Scholar 

  29. Elinson R.P., King M.L., Forristall C. 1993. Isolated vegetal cortex from Xenopus oocytes selectively retains localized mRNAs. Dev. Biol. 160, 554–562.

    Article  PubMed  Google Scholar 

  30. Houston D.W., Zhang J., Maines J.Z., Wasserman S.A., King M.L. 1998. A Xenopus DAZ-like gene encodes an RNA component of germ plasm and is a functional homologue of Drosophila boule. Development. 125, 171–180.

    PubMed  Google Scholar 

  31. Kloc M., Spohr G., Etkin L.D. 1993. Translocation of repetitive RNA sequences with the germ plasm in Xenopuso ocytes. Science. 262, 1712–1714.

    Google Scholar 

  32. Hudson C., Woodland H.R. 1998. Xpat, a gene expressed specifically in germ plasm and primordial germ cells of Xenopus laevis. Mech. Dev. 73, 190–198.

    Article  Google Scholar 

  33. Chan A.P., Kloc M., Etkin L.D. 1999. fatvg encodes a new localized RNA that uses a 25-nucleotide element (FVLE1) to localize to the vegetal cortex of Xenopus oocytes. Development. 126, 4943–4953.

    PubMed  Google Scholar 

  34. Ku M., Melton D.A. 1993. Xwnt-11: A novel maternally expressed Xenopus wnt gene. Development. 119, 1161–1173.

    PubMed  Google Scholar 

  35. Hudson J.W., Alarcon V.B., Elinson R.P. 1996. Identification of new localized RNAs in the Xenopus oocyte by differential display PCR. Dev. Genet. 19, 190–198.

    Article  PubMed  Google Scholar 

  36. MacArthur H., Houston D.W., Bubunenko M., Mosquera L., King M.L. 2000. DEADSouth is a germ plasm specific DEAD-box RNA helicase in Xenopus related to eIF4A. Mech. Dev. 95, 291–295.

    Article  PubMed  Google Scholar 

  37. Pannese M., Cagliani R., Pardini C.L., Boncinelli E. 2000. Xotx1 maternal transcripts are vegetally localized in Xenopus laevis oocytes. Mech. Dev. 90, 111–114.

    Article  PubMed  Google Scholar 

  38. Berekelya L.A., Ponomarev M.B., Luchinskaya N.N., Belyavsky A.V. 2003. Xenopus Germes encodes a novel germ plasm-associated transcript. Gene Expr. Patterns. 3, 521–524.

    Article  PubMed  Google Scholar 

  39. Yisraeli J.K., Sokol S., Melton D.A. 1990. A two-step model for the localization of maternal mRNA in Xenopus oocytes: Involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA. Development. 108, 289–298.

    PubMed  Google Scholar 

  40. Melton D.A. 1987. Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature. 328, 80–82.

    Google Scholar 

  41. Zhang J., King M.L. 1996. Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning. Development. 122, 4119–4129.

    PubMed  Google Scholar 

  42. Kloc M., Etkin L.D. 1998. Apparent continuity between the messenger transport organiser and late RNA localisation pathways during oogenesis in Xenopus. Mech. Dev. 73, 95–106.

    Article  Google Scholar 

  43. Forristall C., Pondel M., Chen L., King M.L. 1995. Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2. Development. 121, 201–208.

    PubMed  Google Scholar 

  44. Hudson C., Woodland H.R. 1998. Xpat, a gene expressed specifically in germ plasm and primordial germ cells of Xenopus laevis. Mech. Dev. 73, 190–198.

    Article  Google Scholar 

  45. Zhou Y., King M.L. 1996. RNA transport to the vegetal cortex of Xenopus oocytes. Dev. Biol. 179, 173–183.

    Article  PubMed  Google Scholar 

  46. Kloc M., Etkin L.D. 1994. Delocalization of Vg1 mRNA from the vegetal cortex in Xenopus oocytes after destruction of xlsirt RNA. Science. 265, 1101–1103.

    Google Scholar 

  47. Betley J.N., Heinrich B., Vernos I., Sardet C., Prodon F., Deshler J.O. 2004. Kinesin II mediates Vg1 mRNA transport in Xenopus oocytes. Curr. Biol. 14, 219–224.

    Article  PubMed  Google Scholar 

  48. Yoon Y.J., Mowry K.L. 2004. Xenopus Staufen is a component of a ribonucleoprotein complex containing Vg1 RNA and kinesin. Development. 131, 3035–3045.

    Article  PubMed  Google Scholar 

  49. Chang P., Torres J., Lewis R.A., Mowry K.L., Houliston E., King M.L. 2004. Localization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulum. Mol. Biol. Cell. 15, 4669–4681.

    Article  PubMed  Google Scholar 

  50. Kobayashi S., Amikura R., Mukai M. 1998. Localization of mitochondrial large ribosomal RNA in germ plasm of Xenopus embryos. Curr. Biol. 8, 1117–1120.

    Article  PubMed  Google Scholar 

  51. St. Johnston, D. 1995. The intracellular localization of messenger RNAs. Cell. 81, 161–170.

    Article  PubMed  Google Scholar 

  52. Betley J.N., Frith M.C., Grabe J.H., Choo S., Deshler J.O. 2002. A ubiquitous and conserved signal for RNA localization in chordates. Curr. Biol. 12, 1756–1761.

    Article  PubMed  Google Scholar 

  53. Gautreau D., Cote C.A., Mowry K.L. 1997. Two copies of a subelement from the Vg1 RNA localization sequence are sufficient to direct vegetal localization in Xenopus oocytes. Development. 124, 5014–5020.

    Google Scholar 

  54. Lewis R.A., Kress T.L., Cote C.A., Gautreau D., Rokop M.E., Mowry K.L. 2004. Conserved and clustered RNA recognition sequences are a critical feature of signals directing RNA localization in Xenopus oocytes. Mech. Dev. 121, 101–109.

    Article  PubMed  Google Scholar 

  55. Kloc M., Bilinski S., Pui-Yee Chan A., Etkin L.D. 2000. The targeting of Xcat2 mRNA to the germinal granules depends on a cis-acting germinal granule localization element within the 3′-UTR. Dev. Biol. 217, 221–229.

    Article  PubMed  Google Scholar 

  56. Wyatt J.R., Tinoco I. 1993. RNA structural elements and RNA function. In: The RNA World. Eds. Gesteland R.F., Atkins, J.F. Cold Spring Harbor, N.Y.: Cold Spring Harbor Lab. Press, 465–498.

    Google Scholar 

  57. Allen L., Kloc M., Etkin L.D. 2003. Identification and characterization of the Xlsirt cis-acting RNA localization element. Differentiation. 71, 311–321.

    Article  PubMed  Google Scholar 

  58. Mowry K.L. 1996. Complex formation between stage-specific oocyte factors and a Xenopus mRNA localization element. Proc. Natl. Acad. Sci. USA. 93, 14608–14613.

    Article  PubMed  Google Scholar 

  59. Deshler J.O., Highett M.I., Abramson T., Schnapp B.J. 1998. A highly conserved RNA-binding protein for cytoplasmic mRNA localization in vertebrates. Curr. Biol. 8, 489–496.

    Article  PubMed  Google Scholar 

  60. Havin L., Git A., Elisha Z., Oberman F., Yaniv K., Schwartz S.P., Standart N., Yisraeli J.K. 1998. RNA-binding protein conserved in both microtubule-and microfilament-based RNA localization. Genes Dev. 12, 1593–1598.

    PubMed  Google Scholar 

  61. Deshler J.O., Highett M.I., Schnapp B.J. 1997. Localization of Xenopus Vg1 mRNA by vera protein and the endoplasmic reticulum. Science. 276, 1128–1131.

    Google Scholar 

  62. Cote C.A., Gautreau D., Denegre J.M., Kress T.L., Terry N.A., Mowry K.L. 1999. A Xenopus protein related to hnRNP I has a role in cytoplasmic RNA localization. Mol. Cell. 4, 431–437.

    Article  PubMed  Google Scholar 

  63. Ross A.F., Oleynikov Y., Kislauskis E.H., Taneja K.L., Singer R.H. 1997. Characterization of a beta-actin mRNA zipcode-binding protein. Mol. Cell. Biol. 17, 2158–2165.

    PubMed  Google Scholar 

  64. Valcarcel J., Gebauer F. 1997. Post-transcriptional regulation: The dawn of PTB. Curr. Biol. 7, R705–R708.

    Article  PubMed  Google Scholar 

  65. Kloc M., Etkin, L.D. 1998. Apparent continuity between the messenger transport organizer and late RNA localization pathways during oogenesis in Xenopus. Mech. Dev. 73, 95–106.

    Article  Google Scholar 

  66. Zhang Q., Yaniv K., Oberman F., Wolke U., Git A., Fromer M., Taylor W.L., Meyer D., Standart N., Raz E., Yisraeli J.K. 1999. Vg1 RBP intracellular distribution and evolutionarily conserved expression at multiple stages during development. Mech. Dev. 88, 101–106.

    Article  PubMed  Google Scholar 

  67. Kress T.L., Yoon Y.J., Mowry K.L. 2004. Nuclear RNP complex assembly initiates cytoplasmic RNA localization. J. Cell Biol. 165, 203–211.

    Article  PubMed  Google Scholar 

  68. Zhao W.M., Jiang C., Kroll T.T., Huber P.W. 2001. A proline-rich protein binds to the localization element of Xenopus Vg1 mRNA and to ligands involved in actin polymerization. EMBO J. 20, 2315–2325.

    Article  PubMed  Google Scholar 

  69. Claussen M., Horvay K., Pieler T. 2004. Evidence for overlapping, but not identical, protein machineries operating in vegetal RNA localization along early and late pathways in Xenopus oocytes. Development. 131, 4263–4273.

    Article  PubMed  Google Scholar 

  70. Kemphues K.J., Priess J.R., Morton D.G., Cheng N.S. 1988. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell. 52, 311–320.

    PubMed  Google Scholar 

  71. Rose L.S., Kemphues K.J. 1998. Early patterning of the C. elegans embryo. Annu. Rev. Genet. 32, 521–545.

    Article  PubMed  Google Scholar 

  72. Goldstein B., Hird S.N. 1996. Specification of the anteroposterior axis in Caenohrabditis elegans. Development. 122, 1467–1474.

    PubMed  Google Scholar 

  73. Munro E., Nance J., Priess J.R. 2004. Cortical flows powered by asymmetrical contraction transport PAR proteins to establish and maintain anterior-posterior polarity in the early C. elegans embryo. Dev. Cell. 7, 413–424.

    Article  PubMed  Google Scholar 

  74. Pellettieri J., Seydoux G. 2002. Anterior-posterior polarity in C. elegans and Drosophila: PAR alleles and differences. Science. 298, 1946–1950.

    Google Scholar 

  75. Boyd L., Guo S., Levitan D., Stinchcomb D.T., Kemphues K.J. 1996. PAR-2 is asymmetrically distributed and promotes association of P-granules and PAR-1 with the cortex in C. elegans embryos. Development. 122, 3075–3084.

    PubMed  Google Scholar 

  76. Tsou M.B., Ku W., Hayashi A., Rose L. 2003. PAR-dependent and geometry-dependent mechanisms of spindle positioning. J. Cell Biol. 160, 845–855.

    Article  PubMed  Google Scholar 

  77. Drewes G., Ebneth A., Mandelkow E.M. 1998. MAPs, MARKs and microtubule dynamics. Trends Biochem. Sci. 23, 307–311.

    Article  PubMed  Google Scholar 

  78. Savage R., Danilchik M. 1993. Dynamics of germ plasm localization and its inhibition by ultraviolet irradiation in early cleavage Xenopus embryos. Dev. Biol. 157, 371–382.

    Article  PubMed  Google Scholar 

  79. Robb D.L., Heasman J., Raats J., Wylie C. 1996. A kinesin-like protein is required for germ plasm aggregation in Xenopus. Cell. 87, 823–831.

    Article  PubMed  Google Scholar 

  80. Yoneda M., Kobayakawa Y., Kubota H., Sakai M. 1982. Surface contraction waves in amphibian eggs. J. Cell Sci. 54, 35–46.

    PubMed  Google Scholar 

  81. Quaas J., Wylie C. 2002. Surface contraction waves (SCWs) in the Xenopus egg are required for the localization of germ plasm and are dependent upon maternal stores of the kinesin-like protein Xklp1. Dev. Biol. 243, 272–280.

    Article  PubMed  Google Scholar 

  82. Woodland H.R., Moore W., Hames R., Machado R., Berekelya L.A., Mikryukov A.A., Ponomarev M., Luchinskaya N., Belyavsky A. 2004. The formation of the germ plasm and PGCs in Xenopus. Abstr. 10th International Xenopus Meeting. Woods Hole, USA, 17.

  83. Wang C., Lehmann R. 1991. Nanos is the localized posterior determinant in Drosophila. Cell. 66, 637–647.

    Article  PubMed  Google Scholar 

  84. Ding D., Parkhurst S.M., Halsell S.R., Lipshitz H.D. 1993. Dynamic Hsp83 RNA localization during Drosophila oogenesis and embryogenesis. Mol. Cell. Biol. 13, 3773–3781.

    PubMed  Google Scholar 

  85. Voronina A.S. 2002. Regulation at the translation level in the early development of eukaryotes. Mol. Biol. 36, 956–959.

    Article  Google Scholar 

  86. Bashirullah A., Cooperstock R.L., Lipshitz H.D. 2001. Spatial and temporal control of RNA stability. Proc. Natl. Acad. Sci. USA. 98, 7025–7028.

    Article  PubMed  Google Scholar 

  87. Bashirullah A., Halsell S.R., Cooperstock R.L., Kloc M., Karaiskakis A., Fisher W.W., Fu W., Hamilton J.K., Etkin L.D., Lipshitz H.D. 1999. Joint action of two RNA degradation pathways controls the timing of maternal transcript elimination at the midblastula transition in Drosophila melanogaster. EMBO J. 18, 2610–2620.

    Article  PubMed  Google Scholar 

  88. Wolke U., Weidinger G., Koprunner M., Raz E. 2002. Multiple levels of posttranscriptional control lead to germ line-specific gene expression in the zebrafish. Current Biol. 12, 289–294.

    Article  Google Scholar 

  89. Macdonald P.M. 2004. Translational control: A cup half full. Curr. Biol. 14, 282–283.

    Article  Google Scholar 

  90. Nelson M.R., Leidal A.M., Smibert C.A. 2004. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J. 23, 150–159.

    Article  PubMed  Google Scholar 

  91. Dahanukar A., Walker J.A., Wharton R.P. 1999. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila. Mol. Cell. 4, 209–218.

    Article  PubMed  Google Scholar 

  92. MacArthur H., Bubunenko M., Houston D.W., King M.L. 1999. Xcat2 RNA is a translationally sequestered germ plasm component in Xenopus. Mech. Dev. 84, 75–88.

    Article  PubMed  Google Scholar 

  93. Amikura R., Kashikawa M., Nakamura A., Kobayashi S. 2001. Presence of mitochondria-type ribosomes outside mitochondria in germ plasm of Drosophila embryos. Proc. Natl. Acad. Sci. USA. 98, 9133–9138.

    Article  PubMed  Google Scholar 

  94. Kobayashi S., Amikura R., Mukai M. 1998. Localization of mitochondrial large ribosomal RNA in germ plasm of Xenopus embryos. Curr. Biol. 8, 1117–1120.

    Article  PubMed  Google Scholar 

  95. Kloc M., Bilinski S., Chan A.P., Etkin L.D. 2001. Mitochondrial ribosomal RNA in the germinal granules in Xenopus embryos revisited. Differentiation. 67, 80–83.

    Article  PubMed  Google Scholar 

  96. Schubert C.M., Lin R., de Vries C.J., Plasterk R.H., Priess J.R. 2000. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol. Cell. 5, 671–682.

    Article  PubMed  Google Scholar 

  97. Reese K.J., Dunn M.A., Waddle J.A., Seydoux G. 2000. Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains. Mol. Cell. 6, 445–455.

    Article  PubMed  Google Scholar 

  98. DeRenzo C., Reese K.J., Seydoux G. 2003. Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation. Nature. 424, 685–689.

    Google Scholar 

  99. Riechmann V., Gutierrez G.J., Filardo P., Nebreda A.R., Ephrussi A. 2002. PAR-1 regulates stability of the posterior determinant Oskar by phosphorylation. Nature Cell Biol. 4, 337–342.

    PubMed  Google Scholar 

  100. Wylie C.C., Holwill S., O’Driscoll M., Snape A., Heasman J. 1985. Germ plasm and germ cell determination in Xenopus laevis as studied by cell transplantation analysis. Cold Spring Harbor Symp. Quant. Biol. 50, 37–43.

    PubMed  Google Scholar 

  101. Shamblott M.J., Axelman J., Wang S., Bugg E.M., Littlefield J.W., Donovan P.J., Blumenthal P.D., Huggins G.R., Gearhart J.D. 1998. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc. Natl. Acad. Sci. USA. 95, 13726–13731.

    Article  PubMed  Google Scholar 

  102. Seydoux G., Mello C., Pettitt J., Wood W.B., Priess J.R., Fire A. 1996. Repression of gene expression in the embryonic germ lineage of C. elegans. Nature. 382, 713–716.

    Google Scholar 

  103. Zalokar M. 1976. Autoradiographic study of protein and RNA formation during early development of Drosophila eggs. Dev. Biol. 49, 425–437.

    Article  PubMed  Google Scholar 

  104. King M.L., Venkataraman T. 2002. What prevents Xenopus primordial germ cells from entering an endodermal fate. Abstr. Meeting on Germ Cells. Cold Spring Harbor, N.Y.: Cold Spring Harbor Lab. Press, 3.

    Google Scholar 

  105. Tomioka M., Miya T., Nishida H. 2002. Repression of zygotic gene expression in the putative germline cells in ascidian embryos. Zool. Sci. 19, 49–55.

    Article  PubMed  Google Scholar 

  106. Seydoux G., Dunn M.A. 1997. Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of Caenorhabditis elegans and Drosophila melanogaster. Development. 124, 2191–2201.

    PubMed  Google Scholar 

  107. Dahmus M.E. 1996. Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J. Biol. Chem. 271, 19009–19012.

    PubMed  Google Scholar 

  108. Reese K.J., Dunn M.A., Waddle J.A., Seydoux G. 2000. Asymmetric segregation of PIE-1 in C. elegans is mediated by two complementary mechanisms that act through separate PIE-1 protein domains. Mol. Cell. 6, 445–455.

    Article  PubMed  Google Scholar 

  109. Zhang F., Barboric M., Blackwell T.K., Peterlin B.M. 2003. A model of repression: CTD analogs and PIE-1 inhibit transcriptional elongation by P-TEFb. Genes Dev. 17, 748–758.

    Article  PubMed  Google Scholar 

  110. Martinho R.G., Kunwar P.S., Casanova J., Lehmann R. 2004. A non-coding RNA is required for the repression of RNA polII-dependent transcription in primordial germ cells. Curr. Biol. 14, 159–165.

    Article  PubMed  Google Scholar 

  111. Deshpande G., Calhoun G., Schedl P.D. 2004. Overlapping mechanisms function to establish transcriptional quiescence in the embryonic Drosophila germ line. Development. 131, 1247–1257.

    Article  PubMed  Google Scholar 

  112. Yang Z., Zhu Q., Luo K., Zhou Q. 2001. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature. 414, 317–322.

    Google Scholar 

  113. Nguyen V.T., Kiss T., Michels A.A., Bensaude O. 2001. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature. 414, 322–325.

    Google Scholar 

  114. Schaner C.E., Deshpande G., Schedl P.D., Kelly W.G. 2003. A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies. Dev. Cell. 5, 747–757.

    Article  PubMed  Google Scholar 

  115. Tsuda M., Sasaoka Y., Kiso M., Abe K., Haraguchi S., Kobayashi S., Saga Y. 2003. Conserved role of nanos proteins in germ cell development. Science. 301, 1239–1241.

    Google Scholar 

  116. Hayashi Y., Hayashi M., Kobayashi S. 2004. Nanos suppresses somatic cell fate in Drosophila germ line. Proc. Natl. Acad. Sci. USA. 101, 10338–10342.

    Article  PubMed  Google Scholar 

  117. Jongens T.A., Ackerman L.D., Swedlow J.R., Jan Y.N. 1994. Germ cell-less encodes a cell type-specific nuclear pore-associated protein and functions early in the germ-cell specification. Genes Dev. 8, 2123–2136.

    PubMed  Google Scholar 

  118. Leatherman J.L., Levin L., Boero J., Jongens T.A. 2002. Germ cell-less acts to repress transcription during the establishment of the Drosophila germ cell lineage. Curr. Biol. 12, 1681–1685.

    Article  PubMed  Google Scholar 

  119. Pan G.J., Chang Z.Y., Scholer H.R., Pei D. 2002. Stem cell pluripotency and transcription factor Oct4. Cell Res. 12, 321–329.

    PubMed  Google Scholar 

  120. Kehler J., Tolkunova E., Koschorz B., Pesce M., Gentile L., Boiani M., Lomeli H., Nagy A., McLaughlin K.J., Scholer H.R., Tomilin A. 2004. Oct4 is required for primordial germ cell survival. EMBO Rep. 5, 1078–1083.

    Article  PubMed  Google Scholar 

  121. Saitou M., Barton S.C., Surani M.A. 2002. A molecular programme for the specification of germ cell fate in mice. Nature. 418, 282–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 664–677.

Original Russian Text Copyright © 2005 by Berekelya, Ponomarev, Mikryukov, Luchinskaya, Belyavsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berekelya, L.A., Ponomarev, M.B., Mikryukov, A.A. et al. Molecular Mechanisms of Germ Line Cell Determination in Animals. Mol Biol 39, 572–584 (2005). https://doi.org/10.1007/s11008-005-0073-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0073-1

Key words

Navigation