Skip to main content
Log in

A New Mechanism of Retrogene Formation in Mammalian Genomes: In Vivo Recombination during RNA Reverse Transcription

  • Reviews
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

L1 LINE retrotransposons play a key role in the formation and sustainable evolution of mammalian genomes. In particular, L1 retrotransposons, which occupy approximately 20% of genomic DNA, transduce their 3′-flanking sequences to new genomic loci and create pseudogenes via reverse transcription of different types of cellular RNAs. Recently, we discovered several families of chimeric pseudogenes in mammalian genomes consisting of fused copies of various cellular transcripts. Characteristic features of such chimeric inserts are indicative of the involvement of L1 enzymatic machinery in their formation. A detailed sequence analysis showed that the 5′-terminal parts of the chimeras were copies of nuclear RNAs, whereas the 3′-terminal parts were formed on the templates of transcripts that have a cytoplasmic location. A mechanism of chimera formation, including a switch of templates during RNA reverse transcription catalyzed by L1 reverse transcriptase, is proposed. The presence in the mammalian genome of not only “double” but also “triple” chimeric retrogenes indicates that not only a single but also a double template switch may occur during L1-catalyzed reverse transcription. Some of the chimeras identified were transcriptionally active, which allowed us to regard the discovered phenomenon as a new mechanism of gene formation by “shuffling” preexisting transcribed sequences. This mechanism currently functions in mammalian genomes; it appeared at least 75 million years ago and is evolutionarily conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. McClintock B. 1956. Controlling elements and the gene. Cold Spring Harbor Symp. Quant. Biol. 21, 197–216.

    CAS  PubMed  Google Scholar 

  2. Wessler S.R. 1998. Transposable elements and the evo-lution of gene expression. Symp. Soc. Exp. Biol. 51, 115–122.

    CAS  PubMed  Google Scholar 

  3. Kapitonov V., Jurka J. 2003. Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc. Natl. Acad. Sci. USA. 100, 6569–6574.

    CAS  PubMed  Google Scholar 

  4. International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature. 409, 860–921.

    Google Scholar 

  5. Baltimore D. 1970. RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature. 226, 1209–1211.

    CAS  PubMed  Google Scholar 

  6. Urnovitz H.B., Murphy W.H. 1996. Human endogenous retroviruses: Nature, occurrence, and clinical implications in human disease. Clin. Microbiol. Rev. 9, 72–99.

    CAS  PubMed  Google Scholar 

  7. Finnegan D.J. 1997. Transposable elements: How non-LTR retrotransposons do it. Curr. Biol. 7, 245–248.

    Google Scholar 

  8. Pyatkov K.I., Arkhipova I.R., Malkova N.V., Finnegan D.J., Evgen’ev M.B. 2004. Reverse transcriptase and endonuclease activities encoded by Penelope-like retroelements. Proc. Natl. Acad. Sci. USA. 101, 14719–14724.

    CAS  PubMed  Google Scholar 

  9. Schmid C.W. 1998. Does SINE evolution preclude Alu function? Nucleic Acids Res. 26, 4541–4550.

    CAS  PubMed  Google Scholar 

  10. Temin H.M. 1993. Retrovirus variation and reverse transcription: Abnormal strand transfers result in retrovirus genetic variation. Proc. Natl. Acad. Sci. USA. 90, 6900–6903.

    CAS  PubMed  Google Scholar 

  11. Malik H.S., Eickbush T.H. 2001. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. Genome Res. 11, 1187–1197.

    Article  CAS  PubMed  Google Scholar 

  12. Eickbush T.H. 1997. Telomerase and retrotransposons: Which came first? Science. 277, 911–912.

    CAS  PubMed  Google Scholar 

  13. Pardue M.L., DeBaryshe P.G. 2003. Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu. Rev. Genet. 37, 485–511.

    CAS  PubMed  Google Scholar 

  14. Buzdin A.A. 2004. Retroelements and formation of chimeric retrogenes. Cell. Mol. Life Sci. 61, 2046–2059.

    Article  CAS  PubMed  Google Scholar 

  15. Mizrokhi L.J., Georgieva S.G., Ilyin Y.V. 1988. Jockey, a mobile Drosophila element similar to mammalian LINEs, is transcribed from the internal promoter by RNA polymerase II. Cell. 54, 685–691.

    CAS  PubMed  Google Scholar 

  16. Birnstiel M.L., Busslinger M., Strub K. 1985. Transcription termination and 3′ processing: The end is in site! Cell. 41, 349–359.

    CAS  PubMed  Google Scholar 

  17. Eickbush T.H. 1992. Transposing without ends: The non-LTR retrotransposable elements. New Biol. 4, 430–440.

    CAS  PubMed  Google Scholar 

  18. Kazazian H.H. 2004. Mobile elements: Drivers of genome evolution. Science. 303, 1626–1632.

    Article  CAS  PubMed  Google Scholar 

  19. Brosius J. 1999. RNAs from all categories generate retrosequences that may be accepted as novel genes or regulatory elements. Gene. 238, 115–134.

    Article  CAS  PubMed  Google Scholar 

  20. Pickeral O.K., Makalowski W., Boguski M.S., Boeke J.D. 2000. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10, 411–415.

    CAS  PubMed  Google Scholar 

  21. Goodier J.L., Ostertag E.M., Kazazian H.H. 2000. Transduction of 3′-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet. 9, 653–657.

    CAS  PubMed  Google Scholar 

  22. Buzdin A., Ustyugova S., Gogvadze E., Lebedev Y., Hunsmann G., Sverdlov E. 2003. Genome-wide targeted search for human specific and polymorphic L1 integrations. Hum. Genet. 112, 527–533.

    CAS  PubMed  Google Scholar 

  23. Brouha B., Schustak J., Badge R.M., Lutz-Prigge S., Farley A.H., Moran J.V., Kazazian H.H. 2003. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. USA. 100, 5280–5285.

    CAS  PubMed  Google Scholar 

  24. Furano A.V. 2000. The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Prog. Nucleic Acid. Res. Mol. Biol. 64, 255–294.

    CAS  PubMed  Google Scholar 

  25. Kolosha V.O., Martin S.L. 2003. High-affinity, non-sequence-specific RNA binding by the open reading frame 1 (ORF1) protein from long interspersed nuclear element 1 (LINE-1). J. Biol. Chem. 278, 8112–8117.

    CAS  PubMed  Google Scholar 

  26. Wei W., Gilbert N., Ooi S.L., Lawler J.F., Ostertag E.M., Kazazian H.H., Boeke J.D., Moran J.V. 2001. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21, 1429–1439.

    CAS  PubMed  Google Scholar 

  27. Dewannieux M., Esnault C., Heidmann T. 2003. LINE-mediated retrotransposition of marked Alu sequences. Nature Genet. 35, 41–48.

    CAS  PubMed  Google Scholar 

  28. Esnault C., Maestre J., Heidmann T. 2000. Human LINE retrotransposons generate processed pseudogenes. Nature Genet. 24, 363–367.

    CAS  PubMed  Google Scholar 

  29. Buzdin A., Gogvadze E., Kovalskaya E., Volchkov P., Ustyugova S., Illarionova A., Fushan A., Vinogradova T., Sverdlov E. 2003. The human genome contains many types of chimeric retrogenes generated through in vivo RNA recombination. Nucleic Acids Res. 31, 4385–4390.

    CAS  PubMed  Google Scholar 

  30. Buzdin A., Ustyugova S., Gogvadze E., Vinogradova T., Lebedev Y., Sverdlov E. 2002. A new family of chimeric retrotranscripts formed by a full copy of U6 small nuclear RNA fused to the 3′ terminus of L1. Genomics. 80, 402–406.

    CAS  PubMed  Google Scholar 

  31. International Mouse Genome Sequencing Consortium. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature. 420, 520–562.

    Google Scholar 

  32. Goodier J.L., Ostertag E.M., Engleka K.A., Seleme M.C., Kazazian H.H. 2004. A potential role for the nucleolus in L1 retrotransposition. Hum. Mol. Genet. 13, 1041–1048.

    CAS  PubMed  Google Scholar 

  33. Giles K.E., Caputi M., Beemon K.L. 2004. Packaging and reverse transcription of snRNAs by retroviruses may generate pseudogenes. RNA. 10, 299–307.

    CAS  PubMed  Google Scholar 

  34. Gogvadze, E.V., Buzdin, A.A., and Sverdlov, E.D., 2005. Template switch during LINE-mediated reverse transcription is the most probable mechanism of the formation of double and triple chimeric retroelements in mammals. Bioorg. Khim. (in press).

  35. Bibillo A., Eickbush T.H. 2002. The reverse transcriptase of the R2 non-LTR retrotransposon: Continuous synthesis of cDNA on non-continuous RNA templates. J. Mol. Biol. 316, 459–473.

    CAS  PubMed  Google Scholar 

  36. Negroni M., Buc H. 2001. Mechanisms of retroviral recombination. Annu. Rev. Genet. 35, 275–302.

    CAS  PubMed  Google Scholar 

  37. Kandel E.S., Nudler E. 2002. Template switching by RNA polymerase II in vivo. Evidence and implications from a retroviral system. Mol. Cell. 10, 1495–1502.

    CAS  PubMed  Google Scholar 

  38. Swanstrom R., Parker R.C., Varmus H.E., Bishop J.M. 1983. Transduction of a cellular oncogene: the genesis of Rous sarcoma virus. Proc. Natl. Acad. Sci. USA. 80, 2519–2523.

    CAS  PubMed  Google Scholar 

  39. Jamain S., Girondot M., Leroy P., Clergue M., Quach H., Fellous M., Bourgeron T. 2001. Transduction of the human gene FAM8A1 by endogenous retrovirus during primate evolution. Genomics. 78, 38–45.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 3, 2005, pp. 364–373.

Original Russian Text Copyright © 2005 by Gogvadze, Buzdin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogvadze, E.V., Buzdin, A.A. A New Mechanism of Retrogene Formation in Mammalian Genomes: In Vivo Recombination during RNA Reverse Transcription. Mol Biol 39, 321–330 (2005). https://doi.org/10.1007/s11008-005-0045-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0045-5

Key words

Navigation