Skip to main content
Log in

Dependence of aminoglycoside 3′-phosphotransferase VIII activity on serine/threonine protein kinases in Streptomyces rimosus

  • Cell Molecular Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

In Streptomyces rimosus, selection for resistance to the aminoglycoside antibiotic kanamycin triggers the normally silent aminoglycoside 3′-phosphotransferase VIII gene (aphVIII). The expression of APHVIII is accompanied by amplification of the chromosomal DNA fragment containing the aphVIII gene. Earlier, S. rimosus aphVIII gene was isolated and sequenced. Using in vitro labeling and immunoprecipitation with anti-APHVIII antibodies, we have demonstrated that endogenous protein kinases (PKs) in extracts of S. rimosus strain S683 actively phosphorylate two serine residues in the APHVIII molecule. The amount of phosphate incorporated into APHVIII in the presence of Ca2+ is 1.84-fold greater than that without Ca2+. Analysis of ingel autophosphorylation and phosphorylation of the substrate incorporated into the gel matrix has shown that modification of APHVIII is catalyzed by two serine/threonine PKs (74 kDa and 55 kDa). The activity of 55-kDa PK is dependent on Ca2+ and calmodulin. The specific kanamycin phosphotransferase activity of exhaustively phosphorylated APHVIII is 3.72 times higher than that of the unmodified enzyme. It is proposed that the above PKs may be involved in the regulation of kanamycin resistance in S. rimosus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Neu H.C. 1992. The crisis in antibiotic resistance. Science. 257, 1064–1073.

    CAS  PubMed  Google Scholar 

  2. Davies J., Wright G.D. 1997. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol. 5, 234–240.

    Article  CAS  PubMed  Google Scholar 

  3. Mingeot-Leclercq M.-P., Glupczynski Y., Tulkens P.M. 1999. Aminoglycosides: Activity and resistance. Antimicrob. Agents Chemother. 43, 727–737.

    CAS  PubMed  Google Scholar 

  4. Danilenko V.N., Akopiants K.E., Sizova I.A., Michurina E.A. 1997. Nucleotide sequencing and characterization of a new aminoglycoside phototransferase gene from a Streptomyces rimosus strain. Genetika. 33, 1264–1272.

    CAS  Google Scholar 

  5. Sizova I.A., Fuhrmann M., Hegemann P. 2001. A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to the Chlamydomonas reinhardtii. Gene. 277, 221–229.

    Article  CAS  PubMed  Google Scholar 

  6. Sizova I.A., Hegemann P., Furman M., Danilenko V.N. 2002. Aminoglycoside 3′-phototransferase VIII of Streptomyces rimosus: Comparison with phototransferases of aminoglycoside-producing strains and with eukaryotic protein kinases. Mol. Biol. 36, 18–25.

    Article  CAS  Google Scholar 

  7. Danilenko V.N., Akopiants K.E. 1995. Instability of the genome and silent genes of actinomycetes. Proc. 9th Int. Symp. on Biology of Actinomycetes. Eds Debabov G., Dudnik G., Danilenko V. Moscow: Bioinform, pp. 104–112.

    Google Scholar 

  8. Petrickova K., Petricek M. 2003. Eukaryotic-type protein kinases in Streptomyces coelicolor: Variations on a common theme. Microbiology. 149, 1609–1621.

    Article  CAS  PubMed  Google Scholar 

  9. Lee P.-Ch., Umeyama T., Horinouchi S. 2002. afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol. Microbiol. 43, 1413–1430.

    Article  CAS  PubMed  Google Scholar 

  10. Neu J.M., MacMillan S.V., Nodwell J.R., Wright G.D. 2002. StoPK-1, a serine/threonine protein kinase from the glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009, affects oxidative stress response. Mol. Microbiol. 44, 417–430.

    Article  CAS  PubMed  Google Scholar 

  11. Mierendorf R., Yeager K., Novy R. 1994. Innovations. Newsletter of Novagen, Inc. 1, 1–3.

    Google Scholar 

  12. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.

    CAS  PubMed  Google Scholar 

  13. Sizova I.A., Lapina T.V., Frolova O.N., Alexandrova N.N., Akopiants K.E., Danilenko V.N. 1996. Stable nuclear transformation of Chlamydomonas reinhardtii with Streptomyces rimosus gene as the selective marker. Gene. 181, 13–18.

    Article  CAS  PubMed  Google Scholar 

  14. Elizarov S.M., Mironov V.A., Danilenko V.N. 2000. Calcium-induced alterations in the functioning of protein Ser/Thr and Tyr kinases in Streptomyces fradiae. Life. 50, 139–143.

    CAS  PubMed  Google Scholar 

  15. Malygin A.G. 1993. Two-dimensional electrophoresis of proteins in polyacrylamide gels: Prospects and technology. Usp. Biol. Khim. 30, 173–212.

    Google Scholar 

  16. Merril E.A., Goldman D., Sedman S.A. 1981. Ultrasensitive stain for proteins in gels shows regional variation in cerebrospinal fluid proteins. Science. 211, 1437–1438.

    CAS  PubMed  Google Scholar 

  17. Kameshita I., Fujisawa H. 1989. A sensitive method for detection of calmodulin-dependent protein kinase II activity in dodecyl sulfate-polyacrylamide gel. Anal. Biochem. 183, 139–143.

    CAS  PubMed  Google Scholar 

  18. Hutchcroft J.E., Anostario M., Harrison M.L., Geahlen R.L. 1991. Renaturation and assay of protein kinases after electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. Methods Enzymol. 200, 417–422.

    CAS  PubMed  Google Scholar 

  19. Elizarov S.M., Danilenko V.N. 2001. Multiple phosphorylation of membrane associated calcium-dependent Serine/Threonine protein kinase in Streptomyces fradiae. FEMS Microbiol. Lett. 202, 135–138.

    CAS  PubMed  Google Scholar 

  20. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    CAS  PubMed  Google Scholar 

  21. Norris V., Grant S., Freestone P., et al. 1996. Calcium signalling in bacteria. J. Bacteriol. 178, 3677–3682.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 255–263.

Original Russian Text Copyright © 2005 by Elizarov, Sergienko, Sizova, Danilenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elizarov, S.M., Sergienko, O.V., Sizova, I.A. et al. Dependence of aminoglycoside 3′-phosphotransferase VIII activity on serine/threonine protein kinases in Streptomyces rimosus . Mol Biol 39, 226–233 (2005). https://doi.org/10.1007/s11008-005-0033-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11008-005-0033-9

Key words

Navigation