Skip to main content
Log in

Accessory parameters in confluent Heun equations and classical irregular conformal blocks

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Classical Virasoro conformal blocks are believed to be directly related to accessory parameters of Floquet type in the Heun equation and some of its confluent versions. We extend this relation to another class of accessory parameter functions that are defined by inverting all-order Bohr–Sommerfeld periods for confluent and biconfluent Heun equation. The relevant conformal blocks involve Nagoya irregular vertex operators of rank 1 and 2 and conjecturally correspond to partition functions of a 4D \({\mathscr {N}}=2\), \(N_f=3\) gauge theory at strong coupling and an Argyres–Douglas theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Zamolodchikov [59] further refers to [6]; however, the discussion of the quasiclassical limit in [6] is limited to a footnote on p. 357 which does not contain a neat formulation of any of the two hypotheses.

  2. For \(N_f=2\), Refs. [51, 53] deal (on the differential equations side) with the Whittaker–Hill equation which is a special case of \(\hbox {H}_\mathrm {III_1}\). Ref. [11] uses gauge theory quantities to define the analog of the right side of (1.12) for \(N_f=3\).

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1964)

    MATH  Google Scholar 

  2. Alba, V.A., Fateev, V.A., Litvinov, A.V., Tarnopolsky, G.M.: On combinatorial expansion of the conformal blocks arising from AGT conjecture. Lett. Math. Phys. 98, 33–64 (2011). arXiv:1012.1312 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91, 167–197 (2010). arXiv:0906.3219 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ashok, S.K., Jatkar, D.P., John, R.R., Raman, M., Troost, J.: Exact WKB analysis of \({\cal{N}} = 2\) gauge theories. J. High Energ. Phys. 2016, 115 (2016). arXiv:1604.05520 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  5. Başar, G., Dunne, G.V.: Resurgence and the Nekrasov–Shatashvili limit: connecting weak and strong coupling in the Mathieu and Lamé systems. JHEP 1502, 160 (2015). arXiv:1501.05671 [hep-th]

    Article  ADS  Google Scholar 

  6. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Beşken, M., Datta, S., Kraus, P.: Semi-classical Virasoro blocks: proof of exponentiation, arXiv:1910.04169v1 [hep-th]

  8. Blandin, J., Pons, R., Marcilhacy, G.: General solution of Teukolsky’s equation. Lett. Nuovo Cimento 38, 561–567 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bonelli, G., Maruyoshi, K., Tanzini, A.: Wild quiver gauge theories. J. High Energ. Phys. 2012, 31 (2012). arXiv:1112.1691 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonelli, G., Lisovyy, O., Maruyoshi, K., Sciarappa, A., Tanzini, A.: On Painlevé/gauge theory correspondence. Lett. Math. Phys. 107, 2359–2413 (2017). arXiv:1612.06235v1 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Carneiro da Cunha, B., Cavalcante, J.P.: Confluent conformal blocks and the Teukolsky master equation. Phys. Rev. D 102, 105013 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  12. Carneiro da Cunha, B., Carvalho de Almeida, M., Rabelo de Queiroz, A.: On the existence of monodromies for the Rabi model. J. Phys. A49, 194002 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Carneiro da Cunha, B., Novaes, F.: Kerr scattering Coefficients via isomonodromy. J. High Energ. Phys. 2015, 144 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chekhov, L., Mazzocco, M.: Colliding holes in Riemann surfaces and quantum cluster algebras. Nonlinearity 31, 54 (2018). arXiv:1509.07044 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chekhov, L., Mazzocco, M., Rubtsov, V.: Painlevé monodromy manifolds, decorated character varieties and cluster algebras. Int. Math. Res. Not. 2017, 7639–7691 (2017). arXiv:1511.03851v1 [math-ph]

    MATH  Google Scholar 

  16. Codesido, S., Mariño, M., Schiappa, R.: Non-perturbative quantum mechanics from non-perturbative strings. Ann. Henri Poincaré 20, 543–603 (2019). arXiv:1712.02603v2 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/

  18. Dubrovin, B., Kapaev, A.: A Riemann-Hilbert approach to the Heun equation. SIGMA 14, 093 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Fiziev, P.: Exact solutions of Regge–Wheeler equation and quasi-normal modes of compact objects. Class. Quant. Grav. 23, 2447–2468 (2006). arXiv:gr-qc/0509123

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Yu.: Painlevé transcendents: the Riemann-Hilbert approach, Mathematical Surveys and Monographs 128. AMS, Providence, RI (2006)

  21. Fuchs, R.: Sur quelques équations différentielles linéaires du second ordre. C. R. Acad. Sci. Paris 141, 555–558 (1905)

    MATH  Google Scholar 

  22. Gaiotto, D.: Asymptotically free \({\cal N\it }=2\) theories and irregular conformal blocks, arXiv:0908.0307 [hep-th]

  23. Gaiotto, D., Teschner, J.: Irregular singularities in Liouville theory and Argyres-Douglas type gauge theories. I. J. High Energ. Phys. 2012, 50 (2012). arXiv:1203.1052 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Gavrylenko, P., Marshakov, A., Stoyan, A.: Irregular conformal blocks, Painlevé III and the blow-up equations, arXiv:2006.15652 [math-ph]

  25. Garnier, R.: Sur des équations différentielles du troisième ordre dont l’intégrale générale est uniforme et sur une classe d’équations nouvelles d’ordre supérieur dont l’intégrale générale a ses points critiques fixes. Ann. Sci. de l’É.N.S. 29, 1–126 (1912)

    MATH  Google Scholar 

  26. Grassi, A., Gu, J.: BPS relations from spectral problems and blowup equations. Lett. Math. Phys. 109, 1271–1302 (2019). arXiv:1609.05914 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Grassi, A., Gu, J., Mariño, M.: Non-perturbative approaches to the quantum Seiberg-Witten curve. J. High Energ. Phys. 2020, 106 (2020). arXiv:1908.07065 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  28. Iwaki, K., Nakanishi, T.: Exact WKB analysis and cluster algebras. J. Phys. A 47, 474009 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jeong, S., Nekrasov, N.: Riemann-Hilbert correspondence and blown up surface defects. J. High Energ. Phys. 2020, 6 (2020). arXiv:2007.03660 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  30. He, W., Miao, Y.-G.: Magnetic expansion of Nekrasov theory: the \(SU(2)\) pure gauge theory. Phys. Rev. D 82, 025020 (2010). arXiv:1006.1214v3 [hep-th]

    Article  ADS  Google Scholar 

  31. Heine, E.: Hanbuch Der Kugelfunktionen, vol. 2, p. 81. Georg Reimer, Berlin (1878)

    Google Scholar 

  32. Hollands, L., Kidwai, O.: Higher length-twist coordinates, generalized Heun’s opers, and twisted superpotentials. Adv. Theor. Math. Phys. 22, 1713–1822 (2018). arXiv:1710.04438 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  33. Leaver, E.W.: Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics. J. Math. Phys. 27, 1238 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Lencsés, M., Novaes, F.: Classical conformal blocks and accessory parameters from isomonodromic deformations. JHEP 04, 096 (2018). arXiv:1709.03476 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Lisovyy, O., Nagoya, H., Roussillon, J.: Irregular conformal blocks and connection formulae for Painlevé V functions. J. Math. Phys. 59, 091409 (2018). arXiv:1806.08344 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Litvinov, A., Lukyanov, S., Nekrasov, N., Zamolodchikov, A.: Classical conformal blocks and Painlevé VI. J. High Energy Phys. 2014, 144 (2014). arXiv:1309.4700 [hep-th]

    Article  MATH  Google Scholar 

  37. Maciejewski, A.J., Przybylska, M., Stachowiak, T.: Full spectrum of the Rabi model. Phys. Lett. A 378, 16–20 (2014). arXiv:1310.8655v1 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Marshakov, A., Mironov, A., Morozov, A.: On non-conformal limit of the AGT relations. Phys. Lett. B 682, 125–129 (2009). arXiv:0909.2052 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  39. Mironov, A., Morozov, A.: Nekrasov Functions and exact Bohr-Sommerfeld integrals. J. High Energ. Phys. 2010, 40 (2010). arXiv:0910.5670v2 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  40. Menotti, P.: On the monodromy problem for the four-punctured sphere. J. Phys. A 47, 415201 (2014). arXiv:1401.2409 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  41. Nagoya, H.: Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations. J. Math. Phys. 56, 123505 (2015). arXiv:1505.02398v3 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Nagoya, H.: Remarks on irregular conformal blocks and Painlevé III and II tau functions, in “Proceedings of the Meeting for Study of Number Theory, Hopf Algebras and Related Topics”; arXiv:1804.04782v2 [math-ph]

  43. Nekrasov, N.A.: Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7, 831–864 (2003). arXiv:hep-th/0206161

    Article  MathSciNet  MATH  Google Scholar 

  44. Nekrasov, N.A.: Blowups in BPS/CFT correspondence, and Painlevé VI, arXiv:2007.03646 [hep-th]

  45. Nekrasov, N.S., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories, arXiv:0908.4052 [hep-th]

  46. Nekrasov, N., Okounkov, A.: Seiberg-Witten theory and random partitions, in “The unity of mathematics”, pp. 525–596, Progr. Math. 244, Birkhäuser Boston, Boston, MA, (2006); arXiv:hep-th/0306238

  47. Nishinaka, T., Uetoko, T.: Argyres-Douglas theories and Liouville irregular states. J. High Energ. Phys. 2019, 104 (2019). arXiv:1905.03795 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  48. Novaes, F., Carneiro da Cunha, B.: Isomonodromy, Painlevé transcendents and scattering off of black holes. JHEP 7, 132 (2014). arXiv:1404.5188 [hep-th]

  49. Novokshenov, VYu.: Movable poles of the solutions of Painleve’s equation of the third kind and their relation with Mathieu functions. Func. Anal. Appl. 20, 113–123 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  50. Piatek, M., Pietrykowski, A.R.: Classical irregular block, \({\cal{N}}=2\) pure gauge theory and Mathieu equation. J. High Energ. Phys. 2014, 32 (2014). arXiv:1407.0305v1 [hep-th]

    Article  MATH  Google Scholar 

  51. Piatek, M.R., Pietrykowski, A.R.: Classical irregular blocks, Hill’s equation and PT-symmetric periodic complex potentials. J. High Energ. Phys. 2016, 131 (2016). arXiv:1604.03574 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  52. Piatek, M., Pietrykowski, A.R.: Solving Heun’s equation using conformal blocks. Nucl. Phys. B 938, 543–570 (2019). arXiv:1708.06135 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Rim, C., Zhang, H.: Classical Virasoro irregular conformal block. J. High Energ. Phys. 2015, 163 (2015). arXiv:1504.07910v2 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  54. Rim, C., Zhang, H.: Classical Virasoro irregular conformal block II. J. High Energ. Phys. 2015, 97 (2015). arXiv:1506.03561v2 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  55. Slavyanov, SYu., Lay, W.: Special Functions: A Unified Theory Based on Singularities. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  56. Suzuki, H., Takasugi, E., Umetsu, H.: Perturbations of Kerr-de Sitter black hole and Heun’s equations. Prog. Theor. Phys. 100, 491–505 (1998). arXiv:gr-qc/9805064

    Article  ADS  MathSciNet  Google Scholar 

  57. Teschner, J.: Quantization of the Hitchin moduli spaces, Liouville theory, and the geometric Langlands correspondence I. Adv. Theor. Math. Phys. 15(2), 471–564 (2011). arXiv:1005.2846v5 [hep-th]

    Article  MathSciNet  MATH  Google Scholar 

  58. Whittaker, E.T., Watson, G.N.: A Course in Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  59. Zamolodchikov, AlB: Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin–Teller model. Sov. Phys. JETP 63(5), 1061–1066 (1986)

    ADS  MathSciNet  Google Scholar 

  60. Zhong, H., Xie, Q., Batchelor, M.T., Lee, C.: Analytical eigenstates for the quantum Rabi model. J. Phys. A 46, 415302 (2013). arXiv:1305.6782 [quant-ph]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Pavlo Gavrylenko and Nikolai Iorgov for illuminating discussions and to Hajime Nagoya for sharing a Mathematica code computing higher-order contributions to confluent conformal blocks of type \({\mathscr {G}}\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Lisovyy.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendices

Heun accessory parameter from continued fractions

It will be convenient for us here to transform the Heun Eq. (1.1) into its canonical form by the substitution

$$\begin{aligned} \psi \left( z\right) =z^{\frac{1}{2}-\theta _0}\left( z-t\right) ^{\frac{1}{2}-\theta _t}\left( z-1\right) ^{\frac{1}{2}-\theta _1}\phi \left( z\right) . \end{aligned}$$
(A.1)

The resulting equation for \(\phi \left( z\right) \) is given by

$$\begin{aligned} \phi ''\left( z\right) +\left( \frac{\gamma }{z}+\frac{\delta }{z-1}+\frac{\epsilon }{z-t}\right) \phi '\left( z\right) +\frac{\alpha \beta z-q}{z\left( z-1\right) \left( z-t\right) }\phi \left( z\right) =0, \end{aligned}$$
(A.2)

with

$$\begin{aligned}&\alpha =1-\theta _0-\theta _1-\theta _t-\theta _\infty ,\qquad \beta =1-\theta _0-\theta _1-\theta _t+\theta _\infty , \end{aligned}$$
(A.3a)
$$\begin{aligned}&\gamma =1-2\theta _0,\qquad \delta =1-2\theta _1,\qquad \epsilon =1-2\theta _t, \end{aligned}$$
(A.3b)
$$\begin{aligned}&q=\left( 1-t\right) {\mathscr {E}}+\frac{\gamma \epsilon +2\alpha \beta t-\left( \gamma +\delta \right) \epsilon t}{2}. \end{aligned}$$
(A.3c)

Obviously, we have a relation \(\alpha +\beta +1=\gamma +\delta +\epsilon \). In spite of loosing a symmetry \(\theta _k\mapsto -\theta _k\) (\(k=0,1,t,\infty \)) present in the normal form (1.1), the canonical form turns out to be better adapted for perturbative calculation below. A similar and very much related phenomenon is known from the AGT correspondence: 4D instanton partition functions have simpler series representations than 2D conformal blocks but loose certain of their manifest symmetries because of the presence of the so-called \(\mathrm {U}\left( 1\right) \) factor.

Choose a basis in the space of solutions of (A.2) which diagonalizes the composite monodromy around the pair of singular points 0, t. Assuming that \(0<|t|<1\), its elements can be represented inside the annulus \(|t|<|z|<1\) in the Floquet form

$$\begin{aligned} \phi \left( z\right) =\sum _{n\in {\mathbb {Z}}}c_n z^{n+\omega }. \end{aligned}$$
(A.4)

Substituting this series into (A.2), one obtains a linear three-term recurrence relation for the coefficients,

$$\begin{aligned} A_n c_{n-1}-B_n c_n+C_n t c_{n+1}=0, \end{aligned}$$
(A.5)

where

$$\begin{aligned} A_n&=\,\left( \omega +n-1+\alpha \right) \left( \omega +n-1+\beta \right) , \end{aligned}$$
(A.6a)
$$\begin{aligned} B_n&=\,q+\left( \omega +n\right) \left( \epsilon +\delta t+\left( \omega +n-1+\gamma \right) \left( 1+t\right) \right) , \end{aligned}$$
(A.6b)
$$\begin{aligned} C_n&=\,\left( \omega +n+1\right) \left( \omega +n+\gamma \right) . \end{aligned}$$
(A.6c)

The recurrence relation above is the main reason we started with (A.2) instead of (1.1). As we will see in a moment, the crucial point for the computation of the small t expansion of the accessory parameter,

$$\begin{aligned} q\left( t\right) =\sum _{n=0}^{\infty }q_nt^n, \end{aligned}$$
(A.7)

is how the time t appears in (A.5).

For \(n\ge 0\), define \(u_n=\displaystyle \frac{c_{n+1}}{c_n}\). This change of variables transforms (A.5) into a nonlinear two-term “Riccati” equation \(u_{n-1}=\frac{A_n}{B_n-tC_n u_n}\). Under assumption that \(B_{n}=O\left( 1\right) \) as \(t\rightarrow 0\) for \(n\ge 1\), one can then express \(u_0\) as an infinite continued fraction

$$\begin{aligned} u_0=\frac{A_1}{B_1-\frac{t C_1A_2}{B_2-\frac{tC_2A_3}{B_3-\ldots }}}. \end{aligned}$$
(A.8)

For \(n\le 0\), we first define rescaled coefficients \(d_{-n}=c_nt^{n}\) and rewrite the 3-term relation (A.5) as

$$\begin{aligned} tA_{-n} d_{n+1}-B_{-n} d_n+C_{-n} d_{n-1}=0, \end{aligned}$$
(A.9)

Introducing \(v_n=\displaystyle \frac{d_{n+1}}{d_n}\), we have \(v_{n-1}= \frac{C_{-n}}{B_{-n}-tA_{-n} v_n}\), so that

$$\begin{aligned} v_0=\frac{C_{-1}}{B_{-1}-\frac{tA_{-1}C_{-2}}{B_{-2}-\frac{tA_{-2}C_{-3}}{B_{-3}-\ldots }}}, \end{aligned}$$
(A.10)

under assumption that \(B_n=O\left( 1\right) \) as \(t\rightarrow 0\) for \(n\le -1\). From \(A_0c_{-1}-B_0c_0+tC_0c_1=0\) it follows that \(t\left( C_0u_0+A_0v_0\right) =B_0\), which ultimately gives an equation determining the accessory parameter q as a function of t for given \(\omega \):

$$\begin{aligned} \quad \frac{tC_0A_1}{B_1-\frac{t C_1A_2}{B_2-\frac{tC_2A_3}{B_3-\ldots }}}+\frac{tA_0C_{-1}}{B_{-1}-\frac{tA_{-1}C_{-2}}{B_{-2}-\frac{tA_{-2}C_{-3}}{B_{-3}-\ldots }}}=B_0. \end{aligned}$$
(A.11)

Note that \(\left\{ A_n\right\} \) and \(\left\{ C_n\right\} \) are just some monodromy-dependent constants; thus, q enters into (A.11) only through \(\left\{ B_n\right\} \). Substituting into (A.6b) the expansion (A.7), the coefficients \(q_k\) can be recursively determined from (A.11) by truncating the continued fraction ladder at the desired order in t.

For example, at order \(O\left( 1\right) \) we have \(B_0=O\left( t\right) \), and therefore

$$\begin{aligned} q_0=-\omega \left( \omega + \gamma +\epsilon -1\right) . \end{aligned}$$
(A.12a)

At order \(O\left( t\right) \), one has \(B_0=t\left( \frac{C_0A_1}{B_1}+\frac{A_0C_{-1}}{B_{-1}}\right) +O\left( t^2\right) \), which gives

$$\begin{aligned} q_1&=-\omega \left( \omega +\gamma +\epsilon -1\right) +\frac{\left( \omega +1\right) \left( \omega +\alpha \right) \left( \omega +\beta \right) \left( \omega +\gamma \right) }{2\omega +\gamma +\epsilon } \nonumber \\&\quad -\frac{ \omega \left( \omega +\alpha -1\right) \left( \omega +\beta -1\right) \left( \omega +\gamma -1\right) }{2\omega +\gamma +\epsilon -2}, \end{aligned}$$
(A.12b)

and so on. Substituting these coefficients into (A.3c), we obtain the expansion of \({\mathscr {E}}={\mathscr {E}}^{[\mathrm {F}]}_{\mathrm {VI}}\left( t|\,\sigma \right) \):

$$\begin{aligned} \begin{aligned}&\,{\mathscr {E}}^{[\mathrm {F}]}_{\mathrm {VI}}\left( t|\,\sigma \right) =\left( \delta _\sigma -\delta _0-\delta _t\right) +{\mathscr {W}}_1\left( \left\{ \delta _k\right\} \right) t + 2{\mathscr {W}}_2\left( \left\{ \delta _k\right\} \right) t^2+O\left( t^3\right) , \end{aligned} \end{aligned}$$
(A.13)

where \({\mathscr {W}}_{1,2}\left( \left\{ \delta _k\right\} \right) \) are given by (2.6a)–(2.6b), \(\left\{ \delta _k\right\} \) are defined by (1.10), \(\left\{ \theta _k\right\} \) are related to \(\alpha ,\beta ,\gamma ,\delta ,\epsilon \) by (A.3a)–(A.3b), and the Floquet exponent appears only in \({\sigma =\omega -\theta _0-\theta _t+\frac{1}{2}}\). One thus easily recognizes in (A.13) the expansion of the logarithmic derivative \(t\frac{\partial }{\partial t}{\mathscr {W}}\left( t\,\bigl |\left\{ \delta _k\right\} \right) \) of the classical regular conformal block (1.8).

Floquet characteristics for confluent Heun equations

Throughout this section, we refer to the notations of Table 1. The perturbative computation of accessory parameter functions of Floquet type presented here allows to check confluent Conjecture B (1.12) at any desired order in t. Assuming the conjecture is true, this technique provides the most elementary method of computing classical CBs of the first kind.

1.1 Equation \(\hbox {H}_\mathrm {V}\)

The change of variables \(\psi \left( z\right) =z^{\frac{1}{2}-\theta _0}\left( z-t\right) ^{\frac{1}{2}-\theta _t}e^{\frac{z}{2}}\phi \left( z\right) \) transforms the confluent HE into the canonical form,

$$\begin{aligned} \phi ''\left( z\right) +\left( \frac{\beta }{z}+\frac{\gamma }{z-t}+1\right) \phi '\left( z\right) +\frac{\alpha z-q}{z\left( z-t\right) }\phi \left( z\right) =0, \end{aligned}$$
(B.1)

with

$$\begin{aligned}&\alpha =1-\theta _0-\theta _t-\theta _*,\qquad \beta =1-2\theta _0,\qquad \gamma =1-2\theta _t, \end{aligned}$$
(B.2a)
$$\begin{aligned}&q=-{\mathscr {E}}+\alpha t-\tfrac{1}{2}{\left( \beta +t\right) \gamma }. \end{aligned}$$
(B.2b)

Looking for the solutions of (B.1) in the Floquet form (A.4), we arrive at the same continued fraction equation (A.11) for \(q\left( t\right) \), except that the coefficients \(\{A_n\}\), \(\{B_n\}\), \(\{C_n\}\) are now given by

$$\begin{aligned} A_n&=\, \omega +n-1+\alpha , \end{aligned}$$
(B.3a)
$$\begin{aligned} B_n&=\,q-\left( \omega +n\right) \left( \omega +n-1+\beta +\gamma -t\right) , \end{aligned}$$
(B.3b)
$$\begin{aligned} C_n&=\,-\left( \omega +n+1\right) \left( \omega +n+\beta \right) . \end{aligned}$$
(B.3c)

The expansion of \(q\left( t\right) \) can now be computed to any desired order. Its first terms read

$$\begin{aligned} q\left( t\right)&=\omega \left( \omega +\beta +\gamma -1\right) \nonumber \\&\quad +\left[ -\omega +\frac{\left( \omega +1\right) \left( \omega +\alpha \right) \left( \omega +\beta \right) }{2\omega +\beta +\gamma }-\frac{\omega \left( \omega +\alpha -1\right) \left( \omega +\beta -1\right) }{2\omega +\beta +\gamma -2}\right] t+O\left( t^2\right) . \end{aligned}$$
(B.4)

The expansion of the Floquet characteristic \({\mathscr {E}}\) is then obtained from (B.2b). (Note that, in contrast with non-confluent HE, the coefficients of expansions of \({\mathscr {E}}\) and \(-q\) coincide starting from the quadratic term.) If we denote \(\sigma =\omega -\theta _0-\theta _t+\frac{1}{2}\) as before, then

$$\begin{aligned} \begin{aligned} {\mathscr {E}}^{[\mathrm {F}]}_{\mathrm {V}}\left( t|\,\sigma \right)&=\,\left( \delta _\sigma -\delta _0-\delta _t\right) -\frac{\theta _*\left( \delta _\sigma -\delta _0+\delta _t\right) }{2\delta _\sigma } t\\&\quad +\,\left[ \frac{\theta _*^2\left( \delta _\sigma ^2-\left( \delta _0-\delta _t\right) ^2\right) }{8\delta _\sigma ^3}-\frac{\left( 3\theta _*^2+\delta _\sigma \right) \left( \delta _\sigma ^2+2\delta _\sigma \left( \delta _0+\delta _t\right) -3\left( \delta _0-\delta _t\right) ^2\right) }{8\delta _\sigma ^2\left( 3+4\delta _\sigma \right) }\right] t^2\\&\quad +O\left( t^3\right) . \end{aligned} \end{aligned}$$
(B.5)

It is instructive to check that this indeed agrees with the limit (1.11a) and reproduces the expansion of \(t\frac{\partial }{\partial t}{\mathscr {W}}_{N_f=3}\left( t\right) \), cf (2.14).

1.2 Equation \(\hbox {H}_{\mathrm {III}_1}\)

After the transformation \(\psi \left( z\right) =\sqrt{z}\,e^{\frac{z}{2}+\frac{t}{2z}}\phi \left( z\right) \), the equation \(\hbox {H}_{\mathrm {III}_1}\) becomes

$$\begin{aligned} \phi ''\left( z\right) +\left( 1+\frac{1}{z}-\frac{t}{z^2}\right) \phi '\left( z\right) +\left( \frac{t\left( \frac{1}{2}-\theta _\star \right) }{z^3}+\frac{{\mathscr {E}}-\frac{t}{2}-\frac{1}{4}}{z^2}+\frac{\frac{1}{2}-\theta _*}{z}\right) \phi \left( z\right) =0. \end{aligned}$$
(B.6)

This is not the canonical form of doubly confluent Heun equation given in http://dlmf.nist.gov/31.12.E2, which is obtained by a slightly different change of variables; yet it is more convenient for us to continue with (B.6). The Floquet substitution (A.4) with \(\omega =\sigma \) yields the equation (A.11) with

$$\begin{aligned} A_n=\theta _*-\sigma -n+\tfrac{1}{2} ,\qquad B_n={\mathscr {E}}-\tfrac{t}{2}-\tfrac{1}{4}+\left( \sigma +n\right) ^2 ,\qquad C_n=\theta _\star +\sigma +n+\tfrac{1}{2}, \end{aligned}$$
(B.7)

which then allows to compute the small t expansion of \({\mathscr {E}}\). Its first few terms are given by

$$\begin{aligned} {\mathscr {E}}^{[\mathrm {F}]}_{\mathrm {III}_1}\left( t|\,\sigma \right) = \delta _\sigma +\frac{\theta _*\theta _\star }{2\delta _\sigma } t+\left( \frac{\left( 3\theta _*^2+\delta _\sigma \right) \left( 3\theta _\star ^2+\delta _\sigma \right) }{8\delta _\sigma ^2\left( 3+4\delta _\sigma \right) }-\frac{\theta _*^2\theta _\star ^2}{8\delta _\sigma ^3}\right) t^2+O\left( t^3\right) . \end{aligned}$$
(B.8)

1.3 Equation \(\hbox {H}_{\mathrm {III}_2}\)

In this case, the relevant change of variables is \(\psi \left( z\right) =\sqrt{z}\,e^{\frac{z}{2}}\phi \left( z\right) \). It transforms the equation \(\hbox {H}_{\mathrm {III}_2}\) into

$$\begin{aligned} \phi ''\left( z\right) +\left( 1+\frac{1}{z}\right) \phi '\left( z\right) +\left( -\frac{t}{z^3}+\frac{{\mathscr {E}}-\frac{1}{4}}{z^2}+\frac{\frac{1}{2}-\theta _*}{z}\right) \phi \left( z\right) =0. \end{aligned}$$
(B.9)

The Floquet substitution (A.4) with \(\omega =\sigma \) again gives the equation (A.11), whose coefficients are now given by

$$\begin{aligned} A_n=\theta _*-\sigma -n+\tfrac{1}{2} ,\qquad B_n={\mathscr {E}}-\tfrac{1}{4}+\left( \sigma +n\right) ^2 ,\qquad C_n=1, \end{aligned}$$
(B.10)

The expansion of accessory parameter function reads

$$\begin{aligned} {\mathscr {E}}^{[\mathrm {F}]}_{\mathrm {III}_2}\left( t|\,\sigma \right)&= \delta _\sigma +\frac{\theta _*}{2\delta _\sigma } t+\frac{\left( 5\delta _\sigma -3\right) \theta _*^2+3\delta _\sigma ^2}{8\delta _\sigma ^3\left( 3+4\delta _\sigma \right) } t^2 \nonumber \\&\quad +\frac{\theta _*\left( \left( 7\delta _\sigma -6\right) \delta _\sigma ^2+\left( 9\delta _\sigma ^2-19\delta _\sigma +6\right) \theta _*^2\right) }{16\delta _\sigma ^5\left( 3+4\delta _\sigma \right) \left( 2+\delta _\sigma \right) }t^3+O\left( t^4\right) . \end{aligned}$$
(B.11)

1.4 Equation \(\hbox {H}_{\mathrm {III}_3}\)

In this last case (recall that it is equivalent to Mathieu equation), the analog of the above calculations is rather well known. There is no need to transform the equation. Making the Floquet ansatz \(\psi \left( z\right) =\sum \nolimits _{n\in {\mathbb {Z}}}c_n z^{\frac{1}{2}+\sigma +n}\) directly in the normal form, we arrive at a three-term recurrence relation and Eq. (A.11) for \({\mathscr {E}}\) with

$$\begin{aligned} A_n=C_n=1,\qquad B_n={\mathscr {E}}-\tfrac{1}{4}+\left( \sigma +n\right) ^2 , \end{aligned}$$
(B.12)

This gives the expansion of the Mathieu characteristic value:

$$\begin{aligned} {\mathscr {E}}^{[\mathrm {F}]}_{\mathrm {III}_3}\left( t|\,\sigma \right) = \delta _\sigma +\frac{t}{2\delta _\sigma }+\frac{ 5\delta _\sigma -3}{8\delta _\sigma ^3\left( 3+4\delta _\sigma \right) } t^2+\frac{ 9\delta _\sigma ^2-19\delta _\sigma +6}{16\delta _\sigma ^5\left( 3+4\delta _\sigma \right) \left( 2+\delta _\sigma \right) }t^3+O\left( t^4\right) . \end{aligned}$$
(B.13)

To facilitate comparison with the literature, note that the parameters \(\nu \) and q in, e.g., [1, Eq. 20.3.15] and [17, Eq. 28.15.E1] correspond to our \(2\sigma \) and \(4\sqrt{t}\) so that \(\delta _\sigma =\frac{1-\nu ^2}{4}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisovyy, O., Naidiuk, A. Accessory parameters in confluent Heun equations and classical irregular conformal blocks. Lett Math Phys 111, 137 (2021). https://doi.org/10.1007/s11005-021-01400-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01400-6

Keywords

Mathematics Subject Classification

Navigation