Skip to main content
Log in

Duality for systems of conservation laws

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

For one-dimensional systems of conservation laws admitting two additional conservation laws, we assign a ruled hypersurface of codimension two in projective space. We call two such systems dual if the corresponding ruled hypersurfaces are dual. We show that a Hamiltonian system is auto-dual, its ruled hypersurface sits in some quadric, and the generators of this ruled hypersurface form a Legendre submanifold with respect to the contact structure on Fano variety of this quadric. We also give a complete geometric description of 3-component nondiagonalizable systems of Temple class: such systems admit two additional conservation laws, they are dual to systems with constant characteristic speeds, constructed via maximal rank 3-webs of curves in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agafonov, S.I., Ferapontov, E.V.: Systems of conservation laws from the point of view of the projective theory of congruences. Izv. Ross. Akad. Nauk Ser. Mat. 60(6), 3–30 (1996). (Translated in Izv. Math. 60 (1996), no. 6, 1097–1122)

    Article  MathSciNet  Google Scholar 

  2. Agafonov, S.I.: Linearly degenerate reducible systems of hydrodynamic type. J. Math. Anal. Appl. 222(1), 15–37 (1998)

    Article  MathSciNet  Google Scholar 

  3. Agafonov, S.I., Ferapontov, E.V.: Theory of congruences and systems of conservation laws. J. Math. Sci. 94(5), 1748–1792 (1999)

    Article  MathSciNet  Google Scholar 

  4. Agafonov, S.I., Ferapontov, E.V.: Systems of conservation laws of temple class, equations of associativity and linear congruences in \(P^4\). Manuscr. Math. 106(4), 461–488 (2001)

    Article  Google Scholar 

  5. Agafonov, S.I., Ferapontov, E.V.: Systems of conservation laws in the setting of the projective theory of congruences: reducible and linearly degenerate systems. Differ. Geom. Appl. 17(2–3), 153–173 (2002)

    Article  MathSciNet  Google Scholar 

  6. Agafonov, S.I., Ferapontov, E.V.: Integrable four-component systems of conservation laws and linear congruences in \({\mathbb{P}}^5\). Glas. Math. J. 47(A), 17–32 (2005)

    Article  Google Scholar 

  7. Blaschke, W., Bol, G.: Geometrie der Gewebe, Topologische Fragen der Differentialgeometrie. Springer, Berlin (1938)

    MATH  Google Scholar 

  8. Blashke, W., Walberer, P.: Die Kurven-3-Gewebe hochsten ranges im \(R^3\). Abh aus dem Math. Semin. Hambg. 10, 180–200 (1934)

    Article  Google Scholar 

  9. Boillat, G.: Sur l’equation generale de Monge–Amper d’ordre superieur. C.R. Acad. Sci. Paris Ser. I Math. 315(11), 1211–1214 (1992)

    MathSciNet  MATH  Google Scholar 

  10. Cecil, T.E.: Lie Sphere Geometry. with Applications to Submanifolds. Universitext, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  11. Dubrovin, B.A., Novikov, S.P.: Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogolyubov–Whitham averaging method (Russian). Dokl. Akad. Nauk SSSR 270(4), 781–785 (1983)

    ADS  MathSciNet  Google Scholar 

  12. Ferapontov, E.V.: Reciprocal transformations and their invariants. Differ. Equ. 25(7), 898–905 (1989)

    MathSciNet  MATH  Google Scholar 

  13. Ferapontov, E.V.: On integrability of \(3\times 3\) semi-Hamiltonian hydrodynamic type systems \(u^i_t=v^i_j(u)u^j_x\) which do not possess Riemann invariants. Phys. D 63(1–2), 50–70 (1993)

    Article  MathSciNet  Google Scholar 

  14. Ferapontov, E.V.: Dupin hypersurfaces and integrable Hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants. Differ. Geom. Appl. 5(2), 121–152 (1995)

    Article  MathSciNet  Google Scholar 

  15. Ferapontov, E.V., Pavlov, M.V., Vitolo, R.F.: Systems of conservation laws with third-order Hamiltonian structures. Lett. Math. Phys. 108(6), 1525–1550 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. Finikov, S.P.: Teoriya kongurencii. (Russian)[Theory of Congruences] Gosudarstv. Izdat. Tehn.Teor. Lit, Leningrad (1950)

  17. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Mathematics Theory & Applications. Birkhäuser Boston Inc, Boston (1994)

    Book  Google Scholar 

  18. Godunov, S.K.: An interesting class of quasi-linear systems. (Russian). Dokl. Akad. Nauk SSSR 139, 521–523 (1961)

    MathSciNet  Google Scholar 

  19. Jeffrey, A.: Quasilinear Hyperbolic Systems and Waves, Research Notes in Math, vol. 5. Pitman, London (1975)

    Google Scholar 

  20. Harris, J.: Algebraic Geometry. A first course. Graduate Texts in Mathematics. Springer, New York (1992)

    Book  Google Scholar 

  21. Lax, P.O.: Hyperbolic systems of conservation laws. Comm. Pure Appl. Math. 10, 537–566 (1957)

    Article  MathSciNet  Google Scholar 

  22. Liu, T.P.: Development of singularities in the nonlinear waves for quasi-linear hyperbolic PDEs. J. Differ. Equ. 33(1), 92–111 (1979)

    Article  ADS  Google Scholar 

  23. Mokhov, O.I., Ferapontov, E.V.: Associativity equations of two-dimensional topological field theory as integrable Hamiltonian nondiagonalizable systems of hydrodynamic type. Funktsional. Anal. i Prilozhen. 30(3), 62–72 (1996). translation in Funct. Anal. Appl. 30 (1997), no. 3, 195–203

    Article  MathSciNet  Google Scholar 

  24. Rozdestvenskii, B.L., Sidorenko, A.D.: On the impossibility of ‘gradient catastrophe’ for weakly nonlinear systems. Z. Vycisl. Mat. i Mat. Fiz. 7, 1176–1179 (1967)

    MathSciNet  Google Scholar 

  25. Rozhdestvenskii, B.L., Janenko, N.N.: Systems Of Quasilinear Equations And Their Applications To Gas Dynamics. Translations of Mathematical Monographs. American Mathematical Society, Providence (1983)

    Book  Google Scholar 

  26. Serre, D.: Systems of Conservation Laws 1.: Hyperbolicity, Entropies, Shock Waves. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  27. Serre, D.: Systems of Conservation Laws 2: Geometric Structures, Oscillations, and Initial-boundary Value Problems. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  28. Sévennec, B.: Géométrie des systèmes hyperboliques de lois de conservation. Mém. Soc. Math 56, 132 (1994). https://doi.org/10.24033/msmf.370

    Article  MATH  Google Scholar 

  29. Temple, B.: Systems of conservation laws with invariant submanifolds. Trans. Am. Math. Soc. 280(2), 781–795 (1983)

    Article  MathSciNet  Google Scholar 

  30. Tsarev, S.P.: Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type. Soviet Math. Dokl. 31, 488–491 (1985)

    MATH  Google Scholar 

  31. Tsarev, S.P.: The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method. Math. USSR Izvestiya 37, 397–419 (1991)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks E.V. Ferapontov for useful discussions. This research was supported by FAPESP Grant #2018/20009-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey I. Agafonov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agafonov, S.I. Duality for systems of conservation laws. Lett Math Phys 110, 1123–1139 (2020). https://doi.org/10.1007/s11005-019-01253-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01253-0

Keywords

Mathematics Subject Classification

Navigation