Skip to main content
Log in

On Fermionic walkers interacting with a correlated structured environment

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the large-time behaviour of a sample \(\mathcal {S}\) consisting of an ensemble of fermionic walkers on a graph interacting with a structured infinite reservoir of fermions \(\mathcal {E}\) through an exchange of particles in preferred states. We describe the asymptotic state of \(\mathcal {S}\) in terms the initial state of \(\mathcal {E}\), with especially simple formulae in the limit of small coupling strength. We also study the particle fluxes into the different parts of the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We represent the CAR in the environment \(\mathcal {E}\) on \(\varGamma ^{-}_{}(\mathcal {H}_\mathcal {E})\) and use \(b^*(\varphi )\) [resp. \(b(\varphi )\)] for the creation [resp. annihilation] operator associated with the vector \(\varphi \in \mathcal {H}_\mathcal {E}\). We use \(b^\sharp \) as a placeholder for either \(b^*\) or b.

  2. Up to a change of sign of the coupling constant \(\alpha \).

References

  1. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 50–59. ACM (2001)

  2. Ahlbrecht, A., Alberti, A., Meschede, D., Scholz, V.B., Werner, A.H., Werner, R.F.: Molecular binding in interacting quantum walks. New J. Phys. 14(7), 073050 (2012)

    Article  ADS  Google Scholar 

  3. Ahlbrecht, A., Scholz, V.B., Werner, A.H.: Disordered quantum walks in one lattice dimension. J. Math. Phys. 52(10), 102201 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  4. Asch, J., Bourget, O., Joye, A.: Spectral stability of unitary network models. Rev. Math. Phys. 27(07), 1530004 (2015)

    Article  MathSciNet  Google Scholar 

  5. Aschbacher, W., Jakšić, V., Pautrat, Y., Pillet, C.-A.: Topics in non-equilibrium quantum statistical mechanics. In: Attal, S., Joye, A., Pillet, C.-A. (eds.) Open Quantum Systems III, pp. 1–66. Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Bruneau, L., Joye, A., Merkli, M.: Repeated interactions in open quantum systems. J. Math. Phys. 55(7), 075204 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  7. Chalker, J.T., Coddington, P.D.: Percolation, quantum tunnelling and the integer Hall effect. J. Phys. C Solid State Phys. 21(14), 2665 (1988)

    Article  ADS  Google Scholar 

  8. Dierckx, B., Fannes, M., Pogorzelska, M.: Fermionic quasifree states and maps in information theory. J. Math. Phys. 49(3), 032109 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hamza, E., Joye, A.: Thermalization of fermionic quantum walkers. J. Stat. Phys. 166(6), 1365–1392 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Howland, J.S.: Stationary scattering theory for time-dependent Hamiltonians. Math. Ann. 207(4), 315–335 (1974)

    Article  MathSciNet  Google Scholar 

  11. Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics an introduction. In: Frohlich, J., Salmhofer, M., Mastropietro, V., De Roeck, W., Cugliandolo, L.F. (eds.) Quantum Theory from Small to Large Scales, Volume 95 of Lecture Notes of the Les Houches Summer School, pp. 213–410. Oxford University Press, Oxford (2011)

    Google Scholar 

  12. Joye, A.: Density of states and Thouless formula for random unitary band matrices. Ann. Henri Poincaré 5(2), 347–379 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. Joye, A., Merkli, M.: Dynamical localization of quantum walks in random environments. J. Stat. Phys. 140(6), 1025–1053 (2010)

    Article  MathSciNet  Google Scholar 

  14. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  ADS  Google Scholar 

  15. Kramer, B., Ohtsuki, T., Kettemann, S.: Random network models and quantum phase transitions in two dimensions. Phys. Rep. 417(5–6), 211–342 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kümmerer, B., Maassen, H.: A scattering theory for Markov chains. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3(01), 161–176 (2000)

    Article  MathSciNet  Google Scholar 

  17. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Math. Phys. 85(5–6), 551–574 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Portugal, R.: Quantum Walks and Search Algorithms. Springer, Berlin (2013)

    Book  Google Scholar 

  19. Siloi, I., Benedetti, C., Piccinini, E., Piilo, J., Maniscalco, S., Paris, M.G., Bordone, P.: Noisy quantum walks of two indistinguishable interacting particles. Phys. Rev. A 95(2), 022106 (2017)

    Article  ADS  Google Scholar 

  20. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Article  MathSciNet  Google Scholar 

  21. Watrous, J.: Quantum simulations of classical random walks and undirected graph connectivity. J. Comput. Syst. Sci. 62(2), 376–391 (2001)

    Article  MathSciNet  Google Scholar 

  22. Yajima, K.: Scattering theory for Schrödinger equations with potentials periodic in time. J. Math. Soc. Jpn. 29(4), 729–743 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Alain Joye for introduction to these questions. The author acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and from the French Agence Nationale de la Recherche through Grant ANR-17-CE40-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Raquépas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Comments on the statistics

Appendix: Comments on the statistics

Following [9], we have made the choice of considering different species of fermions for the sample \(\mathcal {S}\) and the environment \(\mathcal {E}\). Considering the same species for both components of the system would have amounted to imposing the anticommutation relation \(\{a^\sharp (\psi ),{\tilde{b}}(\varphi )\} = 0\) for all \(\psi \in \mathcal {H}_\mathcal {S}\) and \(\varphi \in \mathcal {H}_\mathcal {E}\) instead of the commutation relation \([a^\sharp (\psi ),b(\varphi )] = 0\). This is realized on the Fock space \(\varGamma ^{-}_{}(\mathcal {H}_\mathcal {E}) \otimes \varGamma ^{-}_{}(\mathcal {H}_\mathcal {S})\) by setting . In this case, one finds with the same techniques formulae such as

$$\begin{aligned} {\tilde{K}}_\alpha ^* a^*(\psi ) {\tilde{K}}_\alpha = a^*((\varvec{1}+ (\cos \alpha - 1)P)\psi ) +\mathrm {i}\sin \alpha \, {\tilde{b}}^*(\iota \psi ), \end{aligned}$$

leading to the same formulae as in Lemma 2.2. Therefore, the asymptotics of the state in the sample \(\mathcal {S}\) and the fluxes are same.

With this choice of statistics, one may alternatively view \(\tilde{K}_\alpha \) as arising from the second quantization of a one-body operator on \(\mathcal {H}_\mathcal {E}\oplus \mathcal {H}_\mathcal {S}\):

$$\begin{aligned} {\tilde{K}}_\alpha = \mathcal {U}\varGamma _{}\!\,\,(\varvec{1}+ (\cos \alpha -1)(\iota ^*\iota + \iota \iota ^*) - \mathrm {i}\sin \alpha \,(\iota ^* + \iota )) \mathcal {U}^*, \end{aligned}$$

where \(\mathcal {U} : \varGamma ^{-}_{}(\mathcal {H}_\mathcal {E}\oplus \mathcal {H}_\mathcal {S}) \rightarrow \varGamma ^{-}_{}(\mathcal {H}_\mathcal {E}) \otimes \varGamma ^{-}_{}(\mathcal {H}_\mathcal {S})\) is the usual fermionic exponential map; see, for example, [5, §5.1]. The dynamics implemented by the unitary \(\varGamma _{}\!\,\,((S \otimes U \oplus W)\mathrm {e}^{-\mathrm {i}\alpha (\iota +\iota ^*)})\) gives rise to a quasi-free dynamics and the corresponding one-particle Møller operator

$$\begin{aligned} \varOmega _+ =\mathop {\hbox {s-lim}}\limits _{t \rightarrow \infty }(S \otimes U \oplus W)^{t}((S \otimes U \oplus W)\mathrm {e}^{-\mathrm {i}\alpha (\iota +\iota ^*)})^{-t} \end{aligned}$$

exists and satisfies

$$\begin{aligned} \varOmega _+ (0 \oplus \varvec{1}) = \mathrm {i}\sin \alpha \sum _{t'=0}^{\infty } (S\otimes U)^{t'+1}\iota W^* ((\varvec{1}+ (\cos \alpha -1)\iota ^*\iota W^*)^{t'}. \end{aligned}$$

In particular, one quickly recovers

$$\begin{aligned} (0 \oplus \varvec{1}) \varOmega _+^* (\varSigma \oplus \varXi ) \varOmega _+ (0 \oplus \varvec{1}) = 0 \oplus \varDelta \end{aligned}$$

for all \(\varXi \in \mathcal {B}(\mathcal {H}_\mathcal {S})\), showing that—at least when the initial state in the sample is a giqf state associated with a density \(\varXi \) invariant for the free dynamics—the limiting state is the same as in the case previously considered. This reduction to a one-body problem also suggests the same behaviour for Bose statistics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raquépas, R. On Fermionic walkers interacting with a correlated structured environment. Lett Math Phys 110, 121–145 (2020). https://doi.org/10.1007/s11005-019-01215-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-019-01215-6

Keywords

Mathematics Subject Classification

Navigation