Skip to main content
Log in

Integrable systems, symmetries, and quantization

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

These notes are an expanded version of a mini-course given at the Poisson 2016 conference in Geneva. Starting from classical integrable systems in the sense of Liouville, we explore the notion of non-degenerate singularities and expose recent research in connection with semi-toric systems. The quantum and semiclassical counterparts are also presented, in the viewpoint of the inverse question: from the quantum mechanical spectrum, can one recover the classical system?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. So much so that Weinstein once wrote ‘Everything is a Lagrangian submanifold!’ (cf. [86]).

  2. The only element that acts as the identity at all points of M is the identity of the group.

  3. A priori there is no guarantee that \(F_1(M_1)\) is an open subset of \({\mathbb {R}}^n\). Throughout these notes, if \(A \subset {\mathbb {R}}^n\) is any subset, a map \(H: A \rightarrow {\mathbb {R}}^m\) is said to be smooth if for every \(x \in A\), there exist an open neighborhood W and a smooth map \(H_W : W \rightarrow {\mathbb {R}}^m\) extending \(H|_{A \cap W}\). A diffeomorphism is therefore a smooth map whose inverse is also smooth in the above sense.

  4. This means that all the standard axioms for actions are verified whenever the compositions are possible.

  5. It is possible to introduce a local model for a compact orbit of any Williamson type (cf. [54]), but this is beyond the scope of these notes.

  6. The discussion holds mutatis mutandis in the more general context of \(\left( G,X\right) \)-structures in the sense of [71].

  7. Throughout, we fix an identification \(\mathrm {Lie}\left( \mathbb {T}^2 \right) \cong {\mathbb {R}}^2\).

  8. This corresponds to the fact that the volume invariants of [62, 63] are necessarily positive.

References

  1. Anosov, D.V.: Geodesic flows on closed Riemann manifolds with negative curvature. In: Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder. American Mathematical Society, Providence, RI (1969)

  2. Atiyah, M.F.: Convexity and commuting Hamiltonians. Bull. Lond. Math. Soc. 14(1), 1–15 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auslander, L., Markus, L.: Holonomy of flat affinely connected manifolds. Ann. Math. 2(62), 139–151 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ballmann, W.: Lectures on Spaces of Nonpositive Curvature, Volume 25 of DMV Seminar. Birkhäuser Verlag, Basel (1995). With an appendix by Misha Brin

  5. Bates, L.M., Śniatycki, J.: On action-angle variables. Arch. Ration. Mech. Anal. 120(4), 337–343 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolsinov, A., Izosimov, A.: Smooth invariants of focus–focus singularities and obstructions to product decomposition. arXiv:1706.07456 (2017)

  7. Bolsinov, A.V., Fomenko, A.T.: Integrable Hamiltonian Systems; Geometry, Topology, Classification. Chapman & Hall (2004). Translated from the 1999 Russian original

  8. Chaperon, M.: Normalisation of the smooth focus-focus: a simple proof. Acta Math. Vietnam. 38(1), 3–9 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Charbonnel, A.-M.: Comportement semi-classique du spectre conjoint d’opérateurs pseudo-différentiels qui commutent. Asymptot. Anal. 1, 227–261 (1988)

    MATH  Google Scholar 

  10. Charles, L.: Berezin–Toeplitz operators, a semi-classical approach. Commun. Math. Phys. 239(1–2), 1–28 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Charles, L., Pelayo, Á., Ngọc, S.V.: Isospectrality for quantum toric integrable systems. Ann. Sci. École Norm. Sup. 43, 815–849 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Child, M.S.: Quantum states in a champagne bottle. J. Phys. A 31, 657–670 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Child, M.S., Weston, T., Tennyson, J.: Quantum monodromy in the spectrum of \(\text{ H }_{2}\text{ O }\) and other systems: new insight into the level structure of quasi-linear molecules. Mol. Phys. 96(3), 371–379 (1999)

    Article  ADS  Google Scholar 

  14. Colin de Verdière, Y., Vũ Ngọc, S.: Singular Bohr–Sommerfeld rules for 2D integrable systems. Ann. Sci. École Norm. Sup. (4) 36(1), 1–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. de Verdière, Y.C., Vey, J.: Le lemme de Morse isochore. Topology 18(4), 283–293 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Crainic, M., Fernandes, R.L., Martínez-Torres, D.: Regular Poisson manifolds of compact types (PMCT2). arXiv:1603.00064 (2016)

  17. Crainic, M., Fernandes, R.L., Martínez-Torres, D.: Poisson manifolds of compact types (PMCT1). To appear in Journal für die reine und angewandte Mathematik (Crelle) (2017)

  18. Cummings, F.W.: Stimulated emission of radiation in a single mode. Phys. Rev. 140(4A), A1051–A1056 (1965)

    Article  ADS  Google Scholar 

  19. Cushman, R., Duistermaat, J.J.: The quantum spherical pendulum. Bull. Am. Math. Soc. (N.S.) 19, 475–479 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cushman, R., Dullin, H., Giacobbe, A., Holm, D., Joyeux, M., Lynch, P., Sadovskii, D., Zhilinskii, B.: The \(\text{ CO }_{2}\) molecule as a quantum realization of the 1:1:2 resonant swing-spring with monodromy. Phys. Rev. Lett. 93, 24302 (2004)

    Article  ADS  Google Scholar 

  21. Dazord, P., Delzant, T.: Le problème général des variables actions-angles. J. Differ. Geom. 26(2), 223–251 (1987)

    Article  MATH  Google Scholar 

  22. Delzant, T.: Hamiltoniens périodiques et images convexes de l’application moment. Bull. Soc. Math. France 116(3), 315–339 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dufour, J.-P., Molino, P.: Compactification d’actions de \({\bf R}^n\) et variables action-angle avec singularités. In: Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), volume 20 of Mathematical Sciences Research Institute Publications, pp. 151–167. Springer, New York (1991)

  24. Duistermaat, J.J.: On global action-angle coordinates. Commun. Pure Appl. Math. 33(6), 687–706 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Duistermaat, J.J., Heckman, G.J.: On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math. 69(2), 259–268 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Dullin, H.R.: Semi-global symplectic invariants of the spherical pendulum. J. Differ. Equ. 254(7), 2942–2963 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Eliasson, L.H.: Hamiltonian Systems with Poisson Commuting Integrals. Ph.D Thesis, University of Stockholm, (1984)

  28. Eliasson, L.H.: Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case. Comment. Math. Helv. 65(1), 4–35 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fernandes, R.L., Laurent-Gengoux, C., Vanhaecke, P.: Global action-angle variables for non-commutative integrable systems. J. Symp. Geom. arXiv:1503.00084 (2015) (to appear)

  30. Guillemin, V., Lerman, E., Sternberg, S.: On the Kostant multiplicity formula. J. Geom. Phys. 5(4), 721–750 (1989) (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Guillemin, V., Sternberg, S.: Convexity properties of the moment mapping. Invent. Math. 67(3), 491–513 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics, 2nd edn. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  33. Guillemin, V., Sternberg, S.: Semi-Classical Analysis. International Press, Boston, MA (2013)

    MATH  Google Scholar 

  34. Hofer, H., Zehnder, E.: Symplectic invariants and Hamiltonian dynamics. In: Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel (1994)

  35. Hohloch, S., Sabatini, S., Sepe, D.: From compact semi-toric systems to Hamiltonian \(S^1\)-spaces. Discrete Contin. Dyn. Syst. 35(1), 247–281 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Hohloch, S., Sabatini, S., Sepe, D., Symington, M.: From Hamiltonian \(S^1\)-spaces to compact semi-toric systems via surgeries. In preparation (2017)

  37. Hohloch, S., Sabatini, S., Sepe, D., Symington, M.: Vertical almost-toric systems. arXiv:1706.09935 (2017)

  38. Huygens, C.: Horologium Oscillatorium sive de motu pendulorum. Muguet, Paris (1673)

    Google Scholar 

  39. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51(1), 89–109 (1963)

    Article  Google Scholar 

  40. Jovanović, B.: Noncommutative integrability and action-angle variables in contact geometry. J. Symplectic Geom. 10(4), 535–561 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Joyeux, M.: Gustavson’s procedure and the dynamics of highly excited vibrational states. J. Chem. Phys. 109, 2111–2122 (1998)

    Article  ADS  Google Scholar 

  42. Karshon, Y.: Periodic Hamiltonian flows on four-dimensional manifolds. Mem. Am. Math. Soc. 141(672), viii+71 (1999)

    MathSciNet  MATH  Google Scholar 

  43. Karshon, Y., Lerman, E.: Non-compact symplectic toric manifolds. SIGMA Symmetry Integr. Geom. Methods Appl. 11, 055, 37 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Landau, L.D., Lifshitz, E.M.: Quantum mechanics: non-relativistic theory. In: Course of Theoretical Physics, Vol. 3. Addison-Wesley Series in Advanced Physics. Pergamon Press Ltd., London–Paris; for U.S.A. and Canada: Addison-Wesley Publishing Co., Inc., Reading, Mass (1958). Translated from the Russian by J.B. Sykes and J.S. Bell

  45. Le Floch, Y., Palmer, J., Sepe, D., Ngọc, S.V.: Integrable systems, symmetries, and quantization – exercises with solutions. Poisson 2016 Summer School. https://tinyurl.com/n4qjsm5 (2016)

  46. Le Floch, Y., Pelayo, Á., Vũ Ngọc, S.: Inverse spectral theory for semiclassical Jaynes–Cummings systems. Math. Ann. 364(3), 1393–1413 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Lerman, E., Meinrenken, E., Tolman, S., Woodward, C.: Nonabelian convexity by symplectic cuts. Topology 37(2), 245–259 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ma, X., Marinescu, G.: Holomorphic Morse inequalities and Bergman kernels. In: Progress in Mathematics, vol. 254. Birkhäuser Verlag, Basel (2007)

  49. Matveev, V.S.: Integrable Hamiltonian systems with two degrees of freedom. Topological structure of saturated neighborhoods of points of focus-focus and saddle-saddle types. Mat. Sb. 187(4), 29–58 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  50. McDuff, D., Salamon, D.: Introduction to symplectic topology. In: Oxford Mathematical Monographs, 2nd edn. The Clarendon Press, Oxford University Press, New York (1998)

  51. Mineur, H.: Sur les systèmes mécaniques dans lesquels figurent des paramètres fonctions du temps. Étude des systèmes admettant \(n\) intégrales premières uniformes en involution. Extension à ces systèmes des conditions de quantification de Bohr-Sommerfeld. J. Ecole Polytechn. III (Cahier 1, Fasc. 2 et 3) 173–191, 237–270 (1937)

  52. Miranda, E.: On Symplectic Linearization of Singular Lagrangian Foliations. Ph.D. Thesis, University of Barcelona (2003)

  53. Miranda, E., Ngọc, S.V.: A singular Poincaré lemma. Int. Math. Res. Not. 1, 27–45 (2005)

    Article  MATH  Google Scholar 

  54. Miranda, E., Zung, N.T.: Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems. Ann. Sci. École Norm. Sup. (4) 37(6), 819–839 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Moerdijk, I., Mrčun, J.: Introduction to foliations and Lie groupoids. In: Cambridge Studies in Advanced Mathematics, vol. 91. Cambridge University Press, Cambridge (2003)

  56. Mrčun, J.: An extension of the Reeb stability theorem. Topol. Appl. 70(1), 25–55 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  57. Palais, R.S.: The symmetries of solitons. Bull. Am. Math. Soc. (N.S.) 34(4), 339–403 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  58. Papadopoulos, G., Dullin, H.R.: Semi-global symplectic invariants of the Euler top. J. Geom. Mech. 5(2), 215–232 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Pelayo, Á., Polterovich, L., Ngọc, S.V.: Semiclassical quantization and spectral limits of \(\hbar \)-pseudodifferential and Berezin–Toeplitz operators. Proc. Lond. Math. Soc. (3) 109(3), 676–696 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Pelayo, Á., Ratiu, T., Vu Ngoc, S.: The affine invariant of proper semitoric integrable systems. Nonlinearity 30, 3993–4028 (2017)

  61. Pelayo, Á., Tang, X., Ngọc’s, V.: Conjecture on focus–focus singularities with multiple pinched points. In preparation

  62. Pelayo, Á., Vũ Ngọc, S.: Semitoric integrable systems on symplectic 4-manifolds. Invent. Math. 177(3), 571–597 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Pelayo, Á., Ngọc, S.V.: Constructing integrable systems of semitoric type. Acta Math. 206(1), 93–125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. Pelayo, Á., Vũ Ngọc, S.: Hamiltonian dynamics and spectral theory for spin-oscillators. Commun. Math. Phys. 309(1), 123–154 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Pelayo, Á., Vũ Ngọc, S.: Symplectic theory of completely integrable Hamiltonian systems. Bull. Am. Math. Soc. (N.S.) 48(3), 409–455 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  66. Pelayo, Á., Ngọc, S.V.: First steps in symplectic and spectral theory of integrable systems. Discrete Contin. Dyn. Syst. 32(10), 3325–3377 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Rüssmann, H.: Über das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung. Math. Ann. 154, 285–300 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  68. Sadovskií, D.A., Zĥilinskií, B.I.: Monodromy, diabolic points, and angular momentum coupling. Phys. Lett. A 256(4), 235–244 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Salazar, M.A., Sepe, D.: Contact isotropic realisations of Jacobi manifolds via Spencer operators. SIGMA 13(033), 44 (2017)

    MathSciNet  MATH  Google Scholar 

  70. Sansonetto, N., Sepe, D.: Twisted isotropic realisations of twisted Poisson structures. J. Geom. Mech. 5(2), 233–256 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  71. Smillie, J.: An obstruction to the existence of affine structures. Invent. Math. 64(3), 411–415 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Smirnov, G.: Focus–focus singularities in classical mechanics. Nelin. Dinam. 10(1), 101–112 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  73. Stewart, I.: Quantizing the classical cat. Nature 430, 731–732 (2004)

    Article  ADS  Google Scholar 

  74. Symington, M.: Four dimensions from two in symplectic topology. In: Topology and Geometry of Manifolds (Athens, GA, 2001), volume 71 of Proceedings of the Symposium Pure Mathematics, pp. 153–208. American Mathematical Society, Providence, RI (2003)

  75. Taylor, M.E.: Partial differential equations II. In: Qualitative Studies of Linear Equations, volume 116 of Applied Mathematical Sciences, 2nd ed. Springer, New York (2011)

  76. Vũ Ngọc, S.: Bohr–Sommerfeld conditions for integrable systems with critical manifolds of focus–focus type. Commun. Pure Appl. Math. 53(2), 143–217 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  77. Vũ Ngọc, S.: On semi-global invariants for focus–focus singularities. Topology 42(2), 365–380 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Vũ Ngọc, S.: Moment polytopes for symplectic manifolds with monodromy. Adv. Math. 208(2), 909–934 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  79. Vũ Ngọc, S., Wacheux, C.: Smooth normal forms for integrable Hamiltonian systems near a focus–focus singularity. Acta Math. Vietnam. 38(1), 107–122 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  80. Vey, J.: Sur certains systèmes dynamiques séparables. Am. J. Math. 100(3), 591–614 (1978)

    Article  MATH  Google Scholar 

  81. Vũ Ngọc, S.: Formes normales semi-classiques des systèmes complètement intégrables au voisinage d’un point critique de l’application moment. Asymptotic Analysis 24(3, 4), 319–342 (2000)

    MathSciNet  MATH  Google Scholar 

  82. Vũ Ngọc, S.: Systèmes intégrables semi-classiques: du local au global. Number 22 in Panoramas et Syhthèses. SMF (2006)

  83. Vũ Ngọc, S.: Symplectic inverse spectral theory for pseudodifferential operators. In: Geometric Aspects of Analysis and Mechanics, volume 292 of Progress in Mathematics, pp. 353–372. Birkhäuser, Springer, New York (2011)

  84. Wang, R.: On Integrable Systems and Rigidity for PDEs with Symmetry. Ph.D. Thesis, Utrecht Universiteit (2017)

  85. Weinstein, A.: Symplectic manifolds and their lagrangian submanifolds. Adv. Math. 6, 329–346 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  86. Weinstein, A.: Symplectic geometry. Bull. Am. Math. Soc. (N.S.) 5(1), 1–13 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  87. Weinstein, A.: The local structure of Poisson manifolds. J. Differ. Geom. 18(3), 523–557 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  88. Williamson, J.: On the algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math. 58(1), 141–163 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  89. Williamson, J.: An algebraic problem involving the involutory integrals of linear dynamical systems. Am. J. Math. 62, 881–911 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  90. Zou, M.: Monodromy in two degrees of freedom integrable systems. J. Geom. Phys. 10, 37–45 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Zung, N.T.: Symplectic topology of integrable Hamiltonian systems. I. Arnold–Liouville with singularities. Compos. Math. 101(2), 179–215 (1996)

    MathSciNet  MATH  Google Scholar 

  92. Zung, N.T.: A note on focus–focus singularities. Differ. Geom. Appl. 7(2), 123–130 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  93. Zung, N.T.: Another note on focus–focus singularities. Lett. Math. Phys. 60(1), 87–99 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  94. Zung, N.T.: Symplectic topology of integrable Hamiltonian systems. II. Topological classification. Compos. Math. 138(2), 125–156 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  95. Zung, N.T.: Proper groupoids and momentum maps: linearization, affinity, and convexity. Ann. Sci. École Norm. Sup. (4) 39(5), 841–869 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  96. Zworski, M.: Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence, RI (2012)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Sepe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepe, D., Vũ Ngọc, S. Integrable systems, symmetries, and quantization. Lett Math Phys 108, 499–571 (2018). https://doi.org/10.1007/s11005-017-1018-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-017-1018-z

Keywords

Mathematics Subject Classification

Navigation