Skip to main content
Log in

Off-Diagonal Decay of Toric Bergman Kernels

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the off-diagonal decay of Bergman kernels \({\Pi_{h^k}(z,w)}\) and Berezin kernels \({P_{h^k}(z,w)}\) for ample invariant line bundles over compact toric projective kähler manifolds of dimension m. When the metric is real analytic, \({P_{h^k}(z,w) \simeq k^m {\rm exp} - k D(z,w)}\) where \({D(z,w)}\) is the diastasis. When the metric is only \({C^{\infty}}\) this asymptotic cannot hold for all \({(z,w)}\) since the diastasis is not even defined for all \({(z,w)}\) close to the diagonal. Our main result is that for general toric \({C^{\infty}}\) metrics, \({P_{h^k}(z,w) \simeq k^m {\rm exp} - k D(z,w)}\) as long as w lies on the \({\mathbb{R}_+^m}\)-orbit of z, and for general \({(z,w)}\), \({{\rm lim\,sup}_{k \to \infty} \frac{1}{k} {\rm log} P_{h^k}(z,w) \,\leq\, - D(z^*,w^*)}\) where \({D(z, w^*)}\) is the diastasis between z and the translate of w by \({(S^1)^m}\) to the \({\mathbb{R}_+^m}\) orbit of z. These results are complementary to Mike Christ’s negative results showing that \({P_{h^k}(z,w)}\) does not have off-diagonal exponential decay at “speed” k if \({(z,w)}\) lies on the same \({(S^1)^m}\)-orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calabi E.: Isometric imbedding of complex manifolds. Ann. Math. 58(2), 1–23 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  2. Christ, M.: Off-diagonal decay of Bergman kernels: on a conjecture of Zelditch. In: Hitrik, M., Zelditch, S. (eds.) Algebraic and Analytic Microlocal Analysis, Springer. arXiv:1308.5644

  3. Christ, M.: Upper bounds for Bergman kernels associated to positive line bundles with smooth Hermitian metrics. In: Hitrik, M., Zelditch, S. (eds.) Algebraic and Analytic Microlocal Analysis, Springer. arXiv:1308.0062

  4. Christ, M.: Slow Off-Diagonal Decay for Szegö Kernels Associated to smooth Hermitian Line Bundles. Harmonic Analysis at Mount Holyoke (South Hadley, MA, 2001), 77–89, Contemp. Math., vol. 320. Amer. Math. Soc., Providence (2003)

  5. Phong D.H., Sturm J.: The Monge–Ampère operator and geodesics in the space of Kähler potentials. Invent. Math. 166, 125–149 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Rubinstein Y.A., Zelditch S.: The Cauchy problem for the homogeneous Monge–Ampère equation, I. Toeplitz quantization. J. Differ. Geom. 90(2), 303–327 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Shiffman B., Tate T., Zelditch S.: Distribution laws for integrable eigenfunctions. Ann. Inst. Fourier (Grenoble). 54(5), 1497–1546 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Song J., Zelditch S.: Bergman metrics and geodesics in the space of Kähler metrics on toric varieties. Anal. PDE 3(3), 295–358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Song J., Zelditch S.: Test configurations, large deviations and geodesic rays on toric varieties. Adv. Math. 229(4), 2338–2378 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Notices (6), 317–331 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Zelditch.

Additional information

Dedicated to the memory of Louis Boutet de Monvel

Research partially supported by NSF Grant DMS-1541126.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelditch, S. Off-Diagonal Decay of Toric Bergman Kernels. Lett Math Phys 106, 1849–1864 (2016). https://doi.org/10.1007/s11005-016-0888-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0888-9

Mathematics Subject Classification

Keywords

Navigation