Skip to main content
Log in

Theta Series, Wall-Crossing and Quantum Dilogarithm Identities

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Motivated by mathematical structures which arise in string vacua and gauge theories with \({{\mathcal{N}=2}}\) supersymmetry, we study the properties of certain generalized theta series which appear as Fourier coefficients of functions on a twisted torus. In Calabi–Yau string vacua, such theta series encode instanton corrections from k Neveu–Schwarz five-branes. The theta series are determined by vector-valued wave-functions, and in this work we obtain the transformation of these wave-functions induced by Kontsevich–Soibelman symplectomorphisms. This effectively provides a quantum version of these transformations, where the quantization parameter is inversely proportional to the five-brane charge k. Consistency with wall-crossing implies a new five-term relation for Faddeev’s quantum dilogarithm \({\Phi_b}\) at b = 1, which we prove. By allowing the torus to be non-commutative, we obtain a more general five-term relation valid for arbitrary b and k, which may be relevant for the physics of five-branes at finite chemical potential for angular momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov S.: Twistor Approach to string compactifications: a review. Phys. Rept. 522, 1–57 (2013) arXiv:1111.2892

    Article  ADS  MathSciNet  Google Scholar 

  2. Alexandrov, S., Manschot, J., Persson, D., Pioline, B.: Quantum hypermultiplet moduli spaces in N = 2 string vacua: a review. In: Proceedings, String-Math 2012, Bonn, Germany, July 16–21, 2012, pp. 181–212 (2013). arXiv:1304.0766

  3. Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. arXiv:0811.2435

  4. Becker, K., Becker, M., Strominger, A.: Five-branes, membranes and nonperturbative string theory. Nucl. Phys. B456, 130–152 (1995), arXiv:hep-th/9507158

  5. Alexandrov, S., Pioline, B., Saueressig, F., Vandoren S.: Linear perturbations of quaternionic metrics. Commun. Math. Phys. 296, 353–403 (2010). arXiv:0810.1675.

  6. Alexandrov, S., Banerjee S.: Fivebrane instantons in Calabi–Yau compactifications. Phys. Rev. D90, 041902 (2014) arXiv:1403.1265

  7. Alexandrov, S., Pioline, B., Saueressig, F., Vandoren, S.: D-instantons and twistors. JHEP 03, 044 (2009). arXiv:0812.4219

  8. Alexandrov, S.: D-instantons and twistors: some exact results. J. Phys. A42, 335402 (2009). arXiv:0902.2761

  9. Alexandrov, S., Persson, D., Pioline B.: Wall-crossing, Rogers dilogarithm, and the QK/HK correspondence. JHEP 1112, 027 (2011). arXiv:1110.0466

  10. Alexandrov, S., Persson, D., Pioline B.: Fivebrane instantons, topological wave functions and hypermultiplet moduli spaces. JHEP 1103, 111 (2011). arXiv:1010.5792

  11. Alexandrov, S., Banerjee S.: Dualities and fivebrane instantons. JHEP 1411, 040 (2014). arXiv:1405.0291

  12. Maulik D., Nekrasov N., Okounkov A., Pandharipande R.: Gromov–Witten theory and Donaldson–Thomas theory. I. Compos. Math. 142(5), 1263–1285 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Seiberg, N., Witten, E.: Gauge dynamics and compactification to three dimensions. arXiv:hep-th/9607163

  14. Gaiotto, D., Moore, G.W., Neitzke A.: Four-dimensional wall-crossing via three-dimensional field theory. Commun. Math. Phys. 299, 163–224 (2010). arXiv:0807.4723

  15. Neitzke, A.: On a hyperholomorphic line bundle over the Coulomb branch. arXiv:1110.1619

  16. Dey, A., Neitzke, A.: Hyperkähler sigma model and field theory on Gibbons-Hawking spaces. JHEP 04, 158 (2014). arXiv:1401.0349.

  17. Haydys A.: Hyper–Kähler and quaternionic Kähler manifolds with S 1-symmetries. J. Geom. Phys. 58(3), 293–306 (2008)

  18. Hitchin, N.: On the hyperkähler/quaternion Kähler correspondence. Commun. Math. Phys. 324(1), 77–106 (2013). arXiv:1210.0424

  19. Gaiotto, D., Moore, G.W., Neitzke A.: Framed BPS States. arXiv:1006.0146

  20. Dimofte, T., Gukov S.: Refined, motivic, and quantum. Lett. Math. Phys. 91 (2010) 1, arXiv:0904.1420.

  21. Dimofte, T., Gukov, S., Soibelman, Y.: Quantum Wall Crossing in N=2 Gauge Theories. arXiv:0912.1346

  22. Fock, V.V., Goncharov, A.B.: Cluster ensembles, quantization and the dilogarithm. ArXiv Mathematics e-prints (2003). arXiv:math/0311245

  23. Fock, V.V., Goncharov, A.B.: The quantum dilogarithm and representations of quantum cluster varieties. Invent. Math. 175, 223–286 (2008). arXiv:math/0702397

  24. Fomin, S., Zelevinsky, A.: Cluster algebras I: Foundations. ArXiv Mathematics e-prints (2001). arXiv:math/0104151

  25. Fomin S., Zelevinsky A.: Cluster algebras. IV: coefficients. Compos. Math. 143(1), 112–164 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nakanishi, T.: Periodicities in cluster algebras and dilogarithm identities. In: Representations of algebras and related topics. Proceedings of the 14th international conference on representations of algebras and workshop (ICRA XIV), Tokyo, Japan, August 6–15, 2010., pp. 407–443. European Mathematical Society (EMS), Zürich (2011)

  27. Fock, V., Goncharov, A.: “unpublished.” talk by V. Fock at the CQGM workshop on Quantum Dilogarithms and Quantum TeichmÑŸller Theory, Aarhus, August 9–13 (2010)

  28. Chekhov, L., Fock, V.V.: Quantum Teichmuller space. Theor. Math. Phys. 120, 1245–1259 (1999). arXiv:math/9908165. [Teor. Mat. Fiz.120,511(1999)]

  29. Goncharov, A.: A proof of the pentagon relation for the quantum dilogarithm. arXiv:0706.4054

  30. Faddeev, L.: Volkov’s Pentagon for the Modular Quantum Dilogarithm. Funct. Anal. Appl. 45, 291 (2011). arXiv:1201.6464.

  31. Faddeev, L.D., Kashaev, R.M.: Quantum Dilogarithm. Mod. Phys. Lett. A9, 427–434 (1994). arXiv:hep-th/9310070

  32. Cecotti, S., Neitzke, A., Vafa C.: R-Twisting and 4d/2d Correspondences. arXiv:1006.3435

  33. Ip, I.C.-H., Yamazaki M.: Quantum dilogarithm identities at root of unity. Int. Math. Res. Not. 2016(3), 669–695 (2016). arXiv:1412.5777

  34. Faddeev, L.D.: Discrete Heisenberg-Weyl group and modular group. Lett. Math. Phys. 34, 249–254 (1995). arXiv:hep-th/9504111

  35. Andersen, J. E., Kashaev R.: Complex quantum Chern–Simons. arXiv:1409.1208

  36. Dimofte, T.: 3d superconformal theories from three-manifolds. In: New Dualities of Supersymmetric Gauge Theories, pp. 339–373. Springer, Cham (2016). arXiv:1412.7129

  37. Kashaev, R.M., Nakanishi, T.: Classical and quantum dilogarithm identities. SIGMA 7, 102 (2011). arXiv:1104.4630

  38. Faddeev, L., Kashaev, R., Volkov, A.Y.: Strongly coupled quantum discrete Liouville theory. 1. Algebraic approach and duality. Commun. Math. Phys. 219:199–219 (2001). arXiv:hep-th/0006156

  39. Alexandrov, S., Persson, D., Pioline B.: On the topology of the hypermultiplet moduli space in type II/CY string vacua. Phys.Rev. D83, 026001 (2011). arXiv:1009.3026

  40. Milgram, M.S., Glasser, L.: On Quadratic Gauss Sums and Variations Thereof. arXiv:1405.3194

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Pioline.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, S., Pioline, B. Theta Series, Wall-Crossing and Quantum Dilogarithm Identities. Lett Math Phys 106, 1037–1066 (2016). https://doi.org/10.1007/s11005-016-0857-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0857-3

Mathematics Subject Classification

Keywords

Navigation