Skip to main content
Log in

Abelian Quiver Invariants and Marginal Wall-Crossing

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove the equivalence of (a slightly modified version of) the wall-crossing formula of Manschot, Pioline and Sen and the wall-crossing formula of Kontsevich and Soibelman. The former involves abelian analogues of the motivic Donaldson–Thomas type invariants of quivers with stability introduced by Kontsevich and Soibelman, for which we derive positivity and geometricity properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behrend, K., Bryan, J., Szendrői, B.: Motivic degree zero Donaldson–Thomas invariants. Invent. Math. 192 (2013). http://arxiv.org/abs/0909.5088

  2. Bollobás, B.: Modern graph theory. In: Graduate Texts in Mathematics, vol. 184. Springer, New York (1998)

  3. Crawley-Boevey, W., Van den Bergh, M.: Absolutely indecomposable representations and Kac-Moody Lie algebras. Invent. Math. 155(3), 537–559 (2004). http://arxiv.org/abs/math/0106009, with an appendix by Hiraku Nakajima

    Google Scholar 

  4. Dimofte, T., Gukov, S.: Refined, motivic, and quantum. Lett. Math. Phys. 91(1), 1–27 (2010). http://arxiv.org/abs/0904.1420

    Google Scholar 

  5. Engel, J., Reineke, M.: Smooth models of quiver moduli. Math. Z. 262(4), 817–848 (2009). http://arxiv.org/abs/0706.4306

    Google Scholar 

  6. Filippini, S.A., Stoppa, J.: Block-Göttsche invariants from wall-crossing (2012). http://arxiv.org/abs/1212.4976

  7. Gessel I., Wang D.L.: Depth-first search as a combinatorial correspondence. J. Combin. Theory Ser. A 26(3), 308–313 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gross, M., Pandharipande, R., Siebert, B.: The tropical vertex, Duke Math. J. 153(2), 297–362 (2010). http://arxiv.org/abs/0902.0779

    Google Scholar 

  9. Harvey J.A., Moore G.: On the algebras of BPS states. Commun. Math. Phys. 197(3), 489–519 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Hausel, T., Letellier, E., Rodriguez-Villegas, F.: Positivity of Kac polynomials and DT-invariants for quivers (2012). http://arxiv.org/abs/1204.2375

  11. Hausel, T., Rodriguez-Villegas, F.: Mixed Hodge polynomials of character varieties. Invent. Math. 174(3), 555–624 (2008). http://arxiv.org/abs/math/0612668, With an appendix by Nicholas M. Katz

  12. Joyce, D., Song, Y.: A theory of generalized Donaldson–Thomas invariants. Mem. Amer. Math. Soc. 217, (2012) no. 1020. http://arxiv.org/abs/0810.5645

  13. Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations (2008). http://arxiv.org/abs/0811.2435

  14. Kontsevich, M., Soibelman, Y.: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants. Commun. Num. Theor. Phys. 5, 231–352 (2011). http://arxiv.org/abs/1006.2706

    Google Scholar 

  15. Macdonald, I.G.: Symmetric functions and Hall polynomials, 2nd edn. In: Oxford Mathematical Monographs. Oxford University Press, Oxford (1995). With contributions by A. Zelevinsky

  16. Manschot, J., Pioline, B., Sen, A.: Wall crossing from Boltzmann black hole halos. J. High Energy Phys. 7, 59 (2011). http://arxiv.org/abs/1011.1258

  17. Manschot, J., Pioline, B., Sen, A.: From Black Holes to Quivers (2012). http://arxiv.org/abs/1207.2230

  18. Reineke, M.: The Harder–Narasimhan system in quantum groups and cohomology of quiver moduli. Invent. Math. 152(2), 349–368 (2003). http://arxiv.org/abs/math/0204059

  19. Reineke, M.: Poisson automorphisms and quiver moduli. J. Inst. Math. Jussieu 9(3), 653–667 (2010). http://arxiv.org/abs/0804.3214

    Google Scholar 

  20. Reineke, M.: Cohomology of quiver moduli, functional equations, and integrality of Donaldson–Thomas type invariants. Compost. Math. 147(3), 943–964 (2011). http://arxiv.org/abs/0903.0261

    Google Scholar 

  21. Reineke, M., Stoppa, J., Weist, T.: MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence. Geom. Topol. 16, 2097–2134 (2012). http://arxiv.org/abs/1110.4847

  22. Reineke M., Weist T.: Refined GW/Kronecker correspondence. Math. Ann. 355(1), 17–56 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sen, A.: Equivalence of three wall crossing formulae. Commun. Num. Theor. Phys. 6, 601–659 (2012). http://arxiv.org/abs/1112.2515

  24. Stanley, R.P.: Enumerative combinatorics, vol. 2. In: Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999). With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Reineke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mozgovoy, S., Reineke, M. Abelian Quiver Invariants and Marginal Wall-Crossing. Lett Math Phys 104, 495–525 (2014). https://doi.org/10.1007/s11005-013-0671-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-013-0671-0

Mathematics Subject Classification (1991)

Keywords

Navigation