Skip to main content
Log in

On Convexity of Generalized Wigner–Yanase–Dyson Information

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The convexity of the Wigner–Yanase–Dyson information, as first proved by Lieb, is a deep and fundamental result because it leads to the strong subadditivity of quantum entropy. The Wigner–Yanase–Dyson information is a particular kind of quantum Fisher information with important applications in quantum estimation theory. But unlike the quantum entropy, which is the unique natural quantum extension of the classical Shannon entropy, there are many different variants of quantum Fisher information, and it is desirable to investigate their convexity. This article is devoted to studying the convexity of a direct generalization of the Wigner–Yanase–Dyson information. Some sufficient conditions are obtained, and some necessary conditions are illustrated. In a particular case, a surprising necessary and sufficient condition is obtained. Our results reveal the intricacy and subtlety of the convexity issue for general quantum Fisher information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen P. and Luo S. (2007). Direct approach to quantum extensions of Fisher information. Front. Math. China 2: 359–381

    Article  MathSciNet  MATH  Google Scholar 

  2. Cramér H. (1974). Mathematical Methods of Statistics. Princeton University Press, Princeton

    Google Scholar 

  3. Epstein H. (1973). Remarks on two theorems of E. Lieb. Comm. Math. Phys. 31: 317–325

    Article  MATH  ADS  Google Scholar 

  4. Fisher R.A. (1925). Theory of statistical estimation. Proc. Camb. Philos. Soc. 22: 700–725

    Article  MATH  Google Scholar 

  5. Frieden B.R. (2004). Science from Fisher Information, a Unification. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Gibilisco P. and Isola T. (2003). Wigner–Yanase information on quantum state space: the geometric approach. J. Math. Phys. 44: 3752–3762

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Hansen, F.: Metric adjusted skew information. arXiv: math-ph/0607049v3 (2006)

  8. Hansen F. (2006). Extensions of Lieb’s concavity theorem. J. Stat. Phys. 124: 87–101

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Hansen F. (2007). The Wigner–Yanase entropy is not subadditive. J. Stat. Phys. 126: 643–648

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Hasegawa H. (2003). Dual geometry of the Wigner–Yanase–Dyson information content. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6: 413–430

    Article  MATH  MathSciNet  Google Scholar 

  11. Helstrom C.W. (1976). Quantum Detection and Estimation Theory. Academic Press, New York

    Google Scholar 

  12. Holevo A.S. (1982). Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam

    MATH  Google Scholar 

  13. Ibinson B., Linden N. and Winter A. (2007). All inequalities for the relative entropy. Commun. Math. Phys. 269: 223–238

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Kosaki H. (1982). Interpolation theory and the Wigner–Yanase–Dyson–Lieb concavity. Comm. Math. Phys. 87: 315–329

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Lieb E.H. (1973). Convex trace functions and the Wigner–Yanase–Dyson conjecture. Adv. Math. 11: 267–288

    Article  MATH  MathSciNet  Google Scholar 

  16. Lieb E.H. and Ruskai M.B. (1973). Proof of the strong subadditivity of quantum mechanical entropy. Phys. Rev. Lett. 30: 434–436

    Article  ADS  MathSciNet  Google Scholar 

  17. Lindblad G. (1974). Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39: 111–119

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Lindblad G. (1975). Completely positive maps and entropy inequalities. Commun. Math. Phys. 40: 147–151

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Luo S. (2002). Fisher information, kinetic energy and uncertainty relation inequalities. J. Phys. A 35: 5181–5187

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Luo S. (2000). Quantum Fisher information and uncertainty relations. Lett. Math. Phys. 53: 243–251

    Article  MATH  MathSciNet  Google Scholar 

  21. Luo S. (2004). Wigner–Yanase skew information vs. quantum Fisher information. Proc. Am. Math. Soc. 132: 885–890

    Article  MATH  Google Scholar 

  22. Luo S. and Zhang Q. (2004). On skew information. IEEE Trans. Inf. Theory 50: 1778–1782

    Article  MathSciNet  Google Scholar 

  23. Luo S. and Zhang Q. (2005). Correction to “On skew information”. IEEE Trans. Inf. Theory 51: 4432

    Article  MathSciNet  Google Scholar 

  24. Morozova M. and Chentsov N. (1991). Markov invariant geometry on state manifolds. J. Sov. Math. 56: 2648–2669

    Article  MATH  Google Scholar 

  25. Nielsen M.A. and Chuang I. (2000). Quantum Computation and Quantum Information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  26. Ohya M. and Petz D. (1993). Quantum Entropy and Its Use. Springer, Berlin

    MATH  Google Scholar 

  27. Petz D. (1996). Monotone metrics on matrix space. Linear Algebra Appl. 244: 81–96

    Article  MATH  MathSciNet  Google Scholar 

  28. Petz D. and Hasegawa H. (1996). On the Riemannian metric of α-entropies of density matrices. Lett. Math. Phys. 38: 221–225

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. Seiringer R. (2007). On the failure of subadditivity of the Wigner–Yanase entropy. Lett. Math. Phys. 80: 285–288

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Uhlmann A. (1977). Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory. Commun. Math. Phys. 54: 21–32

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. Wehrl A. (1978). General properties of entropy. Rev. Mod. Phys. 50: 221–260

    Article  ADS  MathSciNet  Google Scholar 

  32. Wigner E.P. and Yanase M.M. (1963). Information contents of distributions. Proc. Natl. Acad. Sci. USA 49: 910–918

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunlong Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, L., Luo, S. On Convexity of Generalized Wigner–Yanase–Dyson Information. Lett Math Phys 83, 253–264 (2008). https://doi.org/10.1007/s11005-008-0222-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-008-0222-2

Mathematics Subject Classification (2000)

Keywords

Navigation