Skip to main content
Log in

Zero Modes’ Fusion Ring and Braid Group Representations for the Extended Chiral su(2) WZNW Model

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A zero modes’ Fock space \(\mathcal{F}_{q}\) is constructed for the extended chiral \({su(2)}\) WZNW model. It gives room to a realization of the fusion ring of representations of the restricted quantum universal enveloping algebra \(\bar{U}_{q}=\bar{U}_{q} sl(2)\) at an even root of unity, \(q^h=-1,\) and of its infinite dimensional extension \(\tilde{U}_{q}\) by the Lusztig operators \(E^{(h)}, F^{(h)}.\) We provide a streamlined derivation of the characteristic equation for the Casimir invariant from the defining relations of \(\bar{U}_{q}.\) A central result is the characterization of the Grothendieck ring of both \(\bar{U}_{q}\) and \(\tilde{U}_{q}\) in Theorem 3.1. The properties of the \(\tilde{U}_{q}\) fusion ring in \(\mathcal{F}_{q}\) are related to the braiding properties of correlation functions of primary fields of the conformal \(\widehat{su}(2)_{h-2}\) current algebra model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev A.Yu. and Faddeev L.D. (1991). \((T^{*} G)_t:\) A toy model for conformal field theory. Commun. Math. Phys. 141: 413–422

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Chari V. and Pressley A. (1994). A Guide to Quantum Groups. Cambridge University Press, London

    MATH  Google Scholar 

  3. Drinfeld V.G. (1990). On almost cocommutative Hopf algebras. Leningr. Math. J. 1: 321–342

    MathSciNet  Google Scholar 

  4. Dubois-Violette, M., Furlan, P., Hadjiivanov, L.K., Isaev, A.P., Pyatov, P.N., Todorov, I.T.: A finite dimensional gauge problem in the WZNW model. In: Doebner H.-D., Dobrev V. (eds.) Quantum Theory and Symmetries, Proceedings of the International Symposium held in Goslar, Germany, 18–22 July 1999, hep-th/9910206

  5. Erdmann, K., Green, E.L., Snashall, N., Taillefer, R.: Representation theory of the Drinfel’d doubles of a family of Hopf algebras, J. Pure Appl. Algebra 204, 413–454 (2006), math.RT/0410017

    Google Scholar 

  6. Faddeev L.D. (2006). History and perspectives of quantum groups. Milan J. Math. 74: 279–294

    Article  MATH  MathSciNet  Google Scholar 

  7. Faddeev L.D., Reshetikhin N.Yu. and Takhtajan L.A. (1990). Quantization of Lie groups and Lie algebras. Leningr. Math. J. 1: 193–225

    MATH  MathSciNet  Google Scholar 

  8. Feigin, B.L., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Yu.: Modular group representations and fusion in LCFT and in the quantum group center, Commun. Math. Phys. 265: 47–93, hep-th/0504093

  9. Feigin, B.L., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Yu.: Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic CFT. Teor. Mat. Fiz. 148, 398–427 (2006) (Theor. Math. Phys. 148, 1210–1235 (2006), math.QA/0512621

  10. Feigin, B.L., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Yu.: Logarithmic extensions of minimal models: characters and modular transformations. Nucl. Phys. B757, 303–343 (2006) hep-th/0606196

    Google Scholar 

  11. Feigin, B.L., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Yu.: Kazhdan–Lusztig-dual quantum group for logarithmic extensions of Virasoro minimal models. J. Math. Phys. 48, 032303 (2007), math.QA/0606506

    Google Scholar 

  12. Fröhlich J. and Kerler T. (1993). Quantum Groups, Quantum Categories and Quantum Field Theory. Lecture Notes in Mathematics, vol. 1542. Springer, Berlin

    Google Scholar 

  13. Fuchs, J., Hwang, S., Semikhatov, A.M., Tipunin, I.Yu.: Nonsemisimple fusion algebras and the Verlinde formula. Commun. Math. Phys. 247, 713–742 (2004), hep-th/0306274

    Google Scholar 

  14. Furlan, P., Hadjiivanov, L.K., Todorov, I.T.: Operator realization of the SU(2) WZNW model. Nucl. Phys. B474, 497–511 (1996), hep-th/9602101

    Google Scholar 

  15. Furlan, P., Hadjiivanov, L.K., Todorov, I.T.: Indecomposable \(U_{q} (s\ell_n)\,\) modules for \(q^h=-1\,\) and BRS intertwiners. J. Phys. A34, 4857–4880 (2001), hep-th/0211154

    Google Scholar 

  16. Furlan, P., Hadjiivanov, L., Isaev, A.P., Ogievetsky, O.V., Pyatov, P.N., Todorov, I.: Quantum matrix algebra for the SU(n)  WZNW model. J. Phys. A36, 5497–5530 (2003), hep-th/0012224

  17. Furlan, P., Hadjiivanov, L.K., Todorov, I.T.: Chiral zero modes of the SU(n)  Wess-Zumino-Novikov-Witten model. J. Phys. A36, 3855–3875 (2003), hep-th/0211154

    Google Scholar 

  18. Fuchs, J.: On non-semisimple fusion rules and tensor categories, hep-th/0602051

  19. Gawedzki K. (1991). Classical origin of quantum group symmetries in Wess–Zumino-Witten conformal field theory. Commun. Math. Phys. 139: 201–213

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Gradshtejn I.S., Ryzhik I.M. and Jeffrey A. (1993). Table of Integrals, Series, and Products, 5th edn. Academic, New York

    Google Scholar 

  21. Hadjiivanov, L.K., Isaev, A.P., Ogievetsky, O.V., Pyatov, P.N., Todorov, I.T.: Hecke algebraic properties of dynamical R-matrices. Application to related matrix algebras. J. Math. Phys. 40, 427–448 (1999), q-alg/9712026

    Google Scholar 

  22. Hadjiivanov L.K., Paunov R.R. and Todorov I.T. (1992). U(q) covariant oscillators and vertex operators. J. Math. Phys. 33: 1379–1394

    Article  ADS  MathSciNet  Google Scholar 

  23. Hadjiivanov, L., Popov, T.: On the rational solutions of the \(\widehat{su}(2)_k\,\) Knizhnik-Zamolodchikov equation. Eur. Phys. J. B29, 183–187 (2002), hep-th/0109219

    Google Scholar 

  24. Hadjiivanov, L.K., Stanev, Ya.S., Todorov, I.T.: Regular basis and R-matrices for the \(\widehat{su}(n)_k\) Knizhnik-Zamolodchikov equation. Lett. Math. Phys. 54, 137–155 (2000), hep-th/0007187

    Google Scholar 

  25. Kerler, T.: Mapping class group actions on quantum doubles. Commun. Math. Phys. 168, 353–388 (1995), hep-th/9402017

    Google Scholar 

  26. Lusztig G. (1993). Introduction to Quantum Groups. Progr. Math. 110. Birkhäuser, Boston

    Google Scholar 

  27. Michel, L., Stanev, Ya.S., Todorov, I.T.: D-E classification of the local extensions of SU(2) current algebras. Theor. Math. Phys. 92, 1063–1074 (1992) (Teor. Mat. Fiz. 92, 507–521 (1992))

    Google Scholar 

  28. Nichols, A.: The origin of multiplets of chiral fields in \(SU(2)_k\,\) WZNW at rational level, JSTAT 0409, 006 (2004), hep-th/0307050

  29. Pasquier V. and Saleur H. (1990). Common structures between finite systems and conformal field theories through quantum groups. Nucl. Phys. B330: 523–556

    Article  ADS  MathSciNet  Google Scholar 

  30. Pusz W. and Woronowicz S.L. (1990). Twisted second quantization. Rep. Math. Phys. 27: 231–257

    Article  MathSciNet  Google Scholar 

  31. Reshetikhin N.Y. and Semenov-Tian-Shansky M.A. (1988). Quantum R-matrices and factorization problems. J. Geom. Phys. 5: 533–550

    Article  MATH  MathSciNet  Google Scholar 

  32. Schneider H.-J. (2001). Some properties of factorizable Hopf algebras. Proc. Am. Math. Soc. 129(7): 1891–1898

    Article  MATH  Google Scholar 

  33. Schwinger J. (1965). On angular momentum [1952]. In: Biedenharn, L.C. and van Dam, H. (eds) Quantum Theory of Angular Momentum. A Collection of Preprints and Original Papers, pp 229–279. Academic, New York

    Google Scholar 

  34. Semikhatov, A.M.: Toward logarithmic extensions of \(\widehat{s}\ell(2)_k\,\) conformal field models, hep-th/0701279

  35. Semikhatov, A.M.: Factorizable ribbon quantum groups in logarithmic conformal field theories, arXiv:0705.4267[hep-th]

  36. Stanev Ya.S., Todorov I.T. and Hadjiivanov L.K. (1992). Braid invariant rational conformal models with a quantum group symmetry. Phys. Lett. B276: 87–92

    ADS  MathSciNet  Google Scholar 

  37. Tsuchiya A. and Kanie Y. (1987). Vertex operators in the conformal field theory on \({\mathbb {P}}^1\,\) and monodromy representations of the braid group. Lett. Math. Phys. 13: 303–312

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmil Hadjiivanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furlan, P., Hadjiivanov, L. & Todorov, I. Zero Modes’ Fusion Ring and Braid Group Representations for the Extended Chiral su(2) WZNW Model. Lett Math Phys 82, 117–151 (2007). https://doi.org/10.1007/s11005-007-0209-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-007-0209-4

Mathematics Subject Classification (2000)

Keywords

Navigation