Skip to main content
Log in

Orderings and Non-formal Deformation Quantization

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose suitable ideas for non-formal deformation quantization of Fréchet Poisson algebras. To deal with the convergence problem of deformation quantization, we employ Fréchet algebras originally given by Gel’fand–Shilov. Ideas from deformation quantization are applied to expressions of elements of abstract algebras, which leads to a notion of “independence of ordering principle”. This principle is useful for the understanding of the star exponential functions and for the transcendental calculus in non-formal deformation quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G., Askey, R., Roy, R.: Special functions, vol. 71 Encyclopedia Mathematics and it Application, Cambridge (2000)

  2. Arnal D., Cortet J.-C., Molin P. and Pinczon G. (1983). Covariance and geometrical invariance in * quantization. J. Math. Phys. 24(2): 276–283

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bayen F., Flato M., Fronsdal C., Lichnerowicz A. and Sternheimer D. (1978). Deformation theory and quantization I. Ann. Phys. 111: 61–110

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bayen F. and Maillard J-M. (1982). Star exponentials of the elements of the homogeneous symplectic Lie algebra. Lett. Math. Phys. 6: 491–497

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonneau P., Gerstenhaber M., Giaquinto A. and Sternheimer D. (2004). Quantum groups and deformation quantization: explicit approaches and implicit aspects. J. Math. Phys. 45: 3703–3741

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Bieliavsky P. and Maeda Y. (2002). Convergent star product algebras on “ax + b” group. Lett. Math. Phys. 62: 233–243

    Article  MATH  MathSciNet  Google Scholar 

  7. Bieliavsky P. and Massar M. (2001). Oscillatory integral formulae for left-invariant star products on a class of Lie groups. Lett. Math. Phys. 58(2): 115–128

    Article  MATH  MathSciNet  Google Scholar 

  8. De Wilde M. and Lecomte P. (1983). Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7: 487–496

    Article  MATH  MathSciNet  Google Scholar 

  9. Fedosov B. (1994). A simple geometrical construction of deformation quantization. J. Differ. Geom. 40: 213–238

    MATH  MathSciNet  Google Scholar 

  10. Flato M. and Sternheimer D. (1969). On an infinite-dimensional group. Comm. Math. Phys. 14: 5–12

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Flato M., Simon J., Snellman H. and Sternheimer D. (1972). Simple facts about analytic vectors and integrability. Ann. Sci. École Norm. Sup. 5(4): 423–434

    MATH  MathSciNet  Google Scholar 

  12. Flato M., Simon J. and Sternheimer D. (1973). Sur l’intégrabilité des représentations antisymétriques des algèbres de Lie compactes. C. R. Acad. Sci. Paris Sér. A-B 277: A939–A942

    MathSciNet  Google Scholar 

  13. Gel’fand I.M. and Shilov G.E. (1968). Generalized Functions, 2. Academic, London

    Google Scholar 

  14. Kontsevich M. (2003). Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66: 157–216

    Article  MATH  MathSciNet  Google Scholar 

  15. Maillard J.-M. (2004). Star exponentials for any ordering of the elements of the inhomogeneous symplectic Lie algebra. J. Math. Phys. 45(2): 785–794

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Maillard, J.-M., Sternheimer, D.: Sur certaines représentations non intégrables de l’algèbre de Lie \({\mathfrak{su}}(2)\) et leur contenu indécomposable. C. R. Acad. Sci. Paris Sér. A-B 280, Aii, A73–A75 (1975)

  17. Moreno C. and da Silva A.P. (2000). Star products, spectral analysis and hyperfunctions. Math. Phys. Stud. 22: 211–214

    Google Scholar 

  18. Natsume T. (2001). C*-algebraic deformation quantization and the index theorem. Math. Phys. Stud. 23: 142–150

    MathSciNet  Google Scholar 

  19. Natsume T., Nest R. and Ingo P. (2003). Strict quantizations of symplectic manifolds. Lett. Math. Phys. 66: 73–89

    Article  MATH  MathSciNet  Google Scholar 

  20. Olver P.J. (1996). Non-associative local Lie groups. J. Lie Theory 6: 23–59

    MATH  ADS  MathSciNet  Google Scholar 

  21. Omori, H.: Infinite-dimensional Lie groups. Translated from the 1979 Japanese original and revised by the author, Translations of Mathematical Monographs, vol. 158. American Mathematical Society, Providence (1997)

  22. Omori H. (2002). One must break symmetry in order to keep associativity. Banach Center Publ. 55: 153–163

    MathSciNet  Google Scholar 

  23. Omori H. (2004). Physics in Mathematics (in Japanese). Tokyo University Publication, Tokyo

    Google Scholar 

  24. Omori H. and Maeda Y. (2004). Quantum Theoretic Calculus (in Japanese). Springer, Tokyo

    Google Scholar 

  25. Omori H., Maeda Y. and Yoshioka A. (1991). Weyl manifolds and deformation quantization. Adv. Math. 85(2): 224–255

    Article  MATH  MathSciNet  Google Scholar 

  26. Omori H., Maeda Y., Miyazaki N. and Yoshioka A. (2000). Deformation quantization of Fréchet–Poisson algebras – Convergence of the Moyal product. Math. Phys. Stud. 22: 233–246

    MathSciNet  Google Scholar 

  27. Omori H., Maeda Y., Miyazaki N. and Yoshioka A. (2001). Singular systems of exponential functions. Math. Phys. Stud. 23: 169–187

    MathSciNet  Google Scholar 

  28. Omori, H., Maeda, Y., Miyazaki, N., Yoshioka, A.: Star exponential functions for quadratic forms and polar elements. Contemp. Math., 25–38 (2002)

  29. Omori H., Maeda Y., Miyazaki N. and Yoshioka A. (2003). Strange phenomena related to ordering problems in quantizations. J. Lie Theory 13: 481–510

    MATH  MathSciNet  Google Scholar 

  30. Omori, H., Maeda, Y., Miyazaki, N., Yoshioka, A.: Star exponential functions as two-valued elements. Prog. Math. 232, 483–492 (2005) math.QA 0711.3668

    Google Scholar 

  31. Omori, H., Maeda, Y., Miyazaki, N., Yoshioka, A.: Geometric objects in an approach to quantum geometry. Prog. Math. 252, 303–324 (2006) math.QA 0711.3665

    Google Scholar 

  32. Omori H., Maeda Y., Miyazaki N. and Yoshioka A. (2007). Convergent star products on Fréchet linear Poisson algebras of Heisenberg type. Contemp. Math. 434: 99–123

    Google Scholar 

  33. Omori, H., Maeda, Y., Miyazaki, N., Yoshioka, A.: Expressions of elements of algebras and transcendental noncommutative calculus. Noncommutative Geometry and Physcis 2005. In: Proceedings of the International Sendai-Beijing Joint Workshop, pp. 3–30 World Scientific Publication, Singapore (2007) math.QA 0711.2608

  34. Rieffel, M.: Deformation quantization for actions of \({\mathbb{R}}^n\) . Mem. Am. Math. Soc. 506 (1993)

  35. Weinstein A. (1994). Traces and triangles in symmetric symplectic spaces. Contemp. Math. 179: 261–270

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Maeda.

Additional information

Yoshiaki Maeda was partially supported by Grant-in-Aid for Scientific Research (#18204006.), Ministry of Education, Science and Culture, Japan.

Naoya Miyazaki was partially supported by Grant-in-Aid for Scientific Research (#18540093.), Ministry of Education, Science and Culture, Japan.

Akira Yoshioka was partially supported by Grant-in-Aid for Scientific Research (#19540103.), Ministry of Education, Science and Culture, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omori, H., Maeda, Y., Miyazaki, N. et al. Orderings and Non-formal Deformation Quantization. Lett Math Phys 82, 153–175 (2007). https://doi.org/10.1007/s11005-007-0208-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-007-0208-5

Mathematics Subject Classification (2000)

Keywords

Navigation