Skip to main content
Log in

The Extended Cartan Homotopy Formula and a Subspace Separation Method for Chern–Simons Theory

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the context of Chern–Simons (CS) Theory, a subspace separation method for the Lagrangian is proposed. The method is based on the iterative use of the Extended Cartan Homotopy Formula, and allows one to (1) separate the action in bulk and boundary contributions, and (2) systematically split the Lagrangian in appropriate reflection of the subspace structure of the gauge algebra. In order to apply the method, one must regard CS forms as a particular case of more general objects known as transgression forms. Five-dimensional CS Supergravity is used as an example to illustrate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chamseddine A.H. (1990). Topological gravity and supergravity in various dimensions. Nucl. Phys. B 346: 213

    Article  ADS  MathSciNet  Google Scholar 

  2. Bañados, M., Troncoso, R., Zanelli, J.: Higher dimensional chern–simons supergravity. Phys. Rev. D 54, 2605 (1996). arXiv: gr-qc/9601003

    Google Scholar 

  3. Troncoso, R., Zanelli, J.: New gauge supergravity in seven and eleven dimensions. Phys. Rev. D 58, 101703 (1998) arXiv: hep-th/9710180

    Google Scholar 

  4. Hořava, P.: M theory as a holographic field theory. Phys. Rev. D 59, 046004 (1999). arXiv: hep-th/9712130

  5. Troncoso, R., Zanelli, J.: Gauge supergravities for all odd dimensions. Int. J. Theor. Phys. 38, 1181 (1999). arXiv: hep-th/9807029

    Google Scholar 

  6. Nastase, H.: Towards a Chern–Simons M theory of OSp(1|32) ×  OSp(1|32). arXiv: hep-th/0306269

  7. Izaurieta, F., Rodríguez, E., Salgado, P.: Eleven-dimensional gauge theory for the M algebra as an abelian semigroup expansion of \({\mathfrak{osp}(32|1)}\) . Preprint GACG/05/2006. arXiv: hep-th/0606225

  8. Mañes J., Stora R. and Zumino B. (1985). Algebraic study of chiral anomalies. Commun. Math. Phys. 102: 157

    Article  MATH  ADS  Google Scholar 

  9. de Azcárraga, J.A., Izquierdo, J.M.: Lie Groups, Lie algebras, cohomology and some applications in physics. Cambridge Univ. Press, Cambridge (1995)

  10. Nakahara, M.: Geometry, Topology and Physics 2nd edn. Institute of Physics Publishing, Philadelphia (2003)

  11. Borowiec, A., Ferraris, M., Francaviglia, M.: A covariant formalism for Chern– Simons gravity. J. Phys. A 36, 2589 (2003) arXiv: hep-th/0301146

    Google Scholar 

  12. Mora, P., Olea, R., Troncoso, R., Zanelli, J.: Finite action principle for Chern– Simons AdS gravity. JHEP 0406, 036 (2004) arXiv: hep-th/0405267

    Google Scholar 

  13. Fatibene, L., Ferraris, M., Francaviglia, M.: Augmented variational principles and relative conservation laws in classical field theory. Int. J. Geom. Methods Mod. Phys. 2, 373 (2005) arXiv: math-ph/0411029

  14. Fatibene L., Francaviglia M. and Mercadante S. (2005). Covariant formulation of Chern–Simons theory. Int. J. Geom. Methods Mod. Phys. 2: 993

    Article  MATH  MathSciNet  Google Scholar 

  15. Borowiec, A., Fatibene, L., Ferraris, M., Francaviglia, M.: Covariant Lagrangian formulation of Chern–Simons and BF theories. Int. J. Geom. Meth. Mod. Phys. 3, 755 (2006) arXiv: hep-th/0511060

    Google Scholar 

  16. Izaurieta, F., Rodríguez, E., Salgado, P.: On transgression forms and Chern–Simons (super)gravity. Preprint LMU-ASC-77-05. arXiv: hep-th/0512014

  17. Mora, P.: Transgression forms as unifying principle in field theory. Ph.D. Thesis, Universidad de la República, Uruguay (2003). arXiv: hep-th/0512255

  18. Mora, P., Olea, R., Troncoso, R., Zanelli, J.: Transgression forms and extensions of Chern–Simons gauge theories. JHEP 0602, 067 (2006) arXiv: hep-th/0601081

    Google Scholar 

  19. Mora, P.: Unified approach to the regularization of odd dimensional AdS gravity. arXiv: hep-th/0603095

  20. de Azcárraga, J.A., Macfarlane, A.J., Mountain, A.J., Pérez, J.C.: Invariant tensors for simple groups. Nucl. Phys. B 510, 657 (1998) arXiv: physics/9706006

    Google Scholar 

  21. Izaurieta, F., Rodríguez, E., Salgado, P.: Expanding Lie (Super)Algebras through Abelian Semigroups. J. Math Phys. 47, 123512 (2006) arXiv: hep-th/0606215

    Google Scholar 

  22. Lovelock D. (1971). The Einstein Tensor and its Generalizations. J. Math. Phys. 12: 498

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Izaurieta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izaurieta, F., Rodríguez, E. & Salgado, P. The Extended Cartan Homotopy Formula and a Subspace Separation Method for Chern–Simons Theory. Lett Math Phys 80, 127–138 (2007). https://doi.org/10.1007/s11005-007-0148-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-007-0148-0

Mathematics Subject Classification (2000)

Keywords

Navigation