Skip to main content
Log in

From Integrable Lattices to Non-QRT Mappings

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Second-order mappings obtained as reductions of integrable lattice equations are generally expected to have integrals that are ratios of biquadratic polynomials, i.e., to be of QRT-type. In this paper we find reductions of integrable lattice equations that are not of this type. The mappings we consider are exact reductions of integrable lattice equations proposed by Adler et al. [Comm Math Phys 233: 513, 2003]. Surprisingly, we found that these mappings possess invariants that are of the type originally studied by Hirota et al. [J Phys A 34: 10377, 2001]. Moreover, we show that several mappings obtained are linearisable and we present their linearisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirota R. (1977). Nonlinear partial difference equations. I. A difference analogue of the Korteweg-de Vries equation. J. Phys. Soc. Jpn. 43:1424

    Article  MathSciNet  ADS  Google Scholar 

  2. Ablowitz M.J., Ladik J.F. (1976). A nonlinear difference scheme and inverse scattering. Stud. Appl. Math. 55:213

    MATH  MathSciNet  Google Scholar 

  3. Nijhoff F.W., Quispel G.R.W., Capel H. (1983). Direct linearization of nonlinear difference-difference equations. Phys. Lett. A 97:125

    Article  MathSciNet  ADS  Google Scholar 

  4. Quispel G.R.W., Roberts J.A.G., Thomson C.J. (1988). Integrable mappings and soliton equations. Phys. Lett. A 126:419

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Quispel G.R.W., Roberts J.A.G., Thomson C.J. (1989). Integrable mappings and soliton equations. II. Physica D 34:183

    MATH  Google Scholar 

  6. Grammaticos B., Ramani A., Papageorgiou V. (1991). Do integrable mappings have the Painlevé property? Phys. Rev. Lett. 67:1825

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Joshi N. (1994). Singularity analysis and integrability for discrete dynamical systems. J. Math. Anal. Appl. 184:573

    Article  MATH  MathSciNet  Google Scholar 

  8. Ramani A., Grammaticos B., Hietarinta J. (1991). Discrete versions of the Painlevé equations. Phys. Rev. Lett. 67:1829

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Baxter R.J. (1982). Exactly solved models in Statistical Mechanics. Associated Press, London, p. 471

    MATH  Google Scholar 

  10. Ramani A., Carstea A.S., Grammaticos B., Ohta Y. (2002). On the autonomous limit of discrete Painlevé equations. Physica A 305:437

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Iatrou A., Roberts J.A.G. (2001). Integrable mappings of the plane preserving biquadratic invariant curves. J. Phys. A 34:6617

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Adler V., Bobenko A., Yu. (2003). Classification of integrable equations on quad-graphs. The consistency approach. Suris, Comm. Math. Phys. 233, 513

    MATH  ADS  Google Scholar 

  13. Nijhoff F.W., Walker A.J. (2001). The discrete and continuous Painlevé VI hierarchy and the Garnier systems. Glasgow Math. J. 43, 109

    Article  MathSciNet  Google Scholar 

  14. Hietarinta J. (2005). Searching for CAC-maps. J. Nonlinear Math. Phys. 12(2):223–230

    MATH  MathSciNet  Google Scholar 

  15. Hirota R., Kimura K., Yahagi H. (2001). How to find the conserved quantities of nonlinear discrete equations. J. Phys. A 34:10377

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Matsukidaira, J., Takahashi, D.: Third-order integrable difference equations generated by a pair of second-order equations, preprint (2005)

  17. Kimura K., Yahagi H., Hirota R., Ramani A., Grammaticos B., Ohta Y. (2002). A new class of integrable discrete systems. J. Phys. A 35:9205

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Viallet C.M., Ramani A., Grammaticos B. (2004). On the integrability of correspondences associated to integral curves. Phys. Lett. A 322:186

    Article  MathSciNet  ADS  Google Scholar 

  19. Ramani A., Grammaticos B. (1996). Discrete Painlevé equations: coalescences, limits and degeneracies. Physica A 228:160

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Ramani A., Grammaticos B., Lafortune S., Ohta Y. (2000). Linearizable mappings and the low-growth criterion. J. Phys. A 33:L287

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Grammaticos B., Ramani A., Lafortune S. (1998). The Gambier mapping, revisited. Physica A 253:260

    Article  MATH  MathSciNet  Google Scholar 

  22. Grammaticos B., Ramani A., Satsuma J., Willox R., Carstea A.S. (2005). Reductions of integrable lattices. J. Nonlin. Math. Phys. 12(1):363

    MathSciNet  Google Scholar 

  23. Bobenko, A., Suris, Yu.: Discrete Differential Geometry. Consistency as Integrability, preprint (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joshi, N., Grammaticos, B., Tamizhmani, T. et al. From Integrable Lattices to Non-QRT Mappings. Lett Math Phys 78, 27–37 (2006). https://doi.org/10.1007/s11005-006-0103-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-006-0103-5

Mathematics Subject Classification (2000)

Keywords

Navigation