Skip to main content
Log in

Quantization of Semi-Classical Twists and Noncommutative Geometry

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

A problem of defining the quantum analogues for semi-classical twists in U(\(\mathfrak{g}\))[[t]] is considered. First, we study specialization at q = 1 of singular coboundary twists defined in Uq (\(\mathfrak{g}\)))[[t]] for g being a nonexceptional Lie algebra, then we consider specialization of noncoboundary twists when \(\mathfrak{g}\)=\(\mathfrak{sl}_{3}\) and obtain q-deformation of the semiclassical twist introduced by Connes and Moscovici in noncommutative geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Connes, A., Moscovici, H.: Rankin–Cohen Brackets and the Hopf algebra of transverse geometry. MMJ: vol. 4. N1, math.QA/0304316 (2004)

  2. Bonneau P., Gerstenhaber M., Giaquinto A., Sternheimer D. (2004). Quantum groups and deformation quantization: explicit approaches and implicit aspects. J. Math. Phys. 45:3703

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Chari V., Pressley A. (1994). A guide to quantum groups. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  4. Cremmer E., Gervais J.L. (1990). The quantum group structure associated with non-linearly extended Virasoro algebras. Comm. Math. Phys. 134:619–632

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Faddeev L., Kashaev R. (1994). Quantum dilogarithm. Modern Phys. Lett. A 9:427–434 hep-th/9310070

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Giaquinto A., Zhang J. (1998). Bialgebra actions, twists, and universal deformation formulas. J. Pure Appl. Algebra 128(4):133–151 hep-th/9411140

    Article  MATH  MathSciNet  Google Scholar 

  7. Kac V., Cheung P. (2002). Quantum calculus. Springer, Berlin, Heidelberg New York

    MATH  Google Scholar 

  8. Khoroshkin S., Stolin A., Tolstoy V. (2001). q-Power function over q-commuting variables and deformed XXX XXZ chains. Phys. Atomic Nuclei 64(12), 2173–2178 math.QA/0012207

    Article  ADS  MathSciNet  Google Scholar 

  9. Khoroshkin S., Tolstoy V. (1991). Universal R-matrix for quantized (super)algebras. Commun. Math. Phys. 141(3):599–617

    Article  ADS  MathSciNet  Google Scholar 

  10. Korogodski L., Soibelman Y. (1998). Algebras of functions on quantum groups. AMS, Providence, RI

    MATH  Google Scholar 

  11. Kulish P., Lyakhovsky V., Mudrov A. (1999). Extended jordanian twist for Lie algebras. J. Math. Phys. 40:4569–4586 math.QA/9806014

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Kulish P., Mudrov A. (1999). Universal R-matrix for esoteric quantum group. Lett. Math. Phys. 47(2):139–148 math.QA/9804006

    Article  MATH  MathSciNet  Google Scholar 

  13. Samsonov M. (2005). Semi-classical twists for \(\mathfrak{sl}_{3}\) and \(\mathfrak{sl}_{4}\)boundary r-matrices of CremmerΓÇôGervais Type. Lett. Math. Phys. 72(3):197ΓÇô210 math.QA/0501369

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Samsonov.

Additional information

Mathematics Subject Classification: 16W30, 17B37, 81R50

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samsonov, M. Quantization of Semi-Classical Twists and Noncommutative Geometry. Lett Math Phys 75, 63–77 (2006). https://doi.org/10.1007/s11005-005-0038-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-005-0038-2

Keywords

Navigation