Skip to main content
Log in

Computer Theorem Proving in Mathematics

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give an overview of issues surrounding computer-verified theorem proving in the standard pure-mathematical context. This includes the basic reasons why it should be interesting to pure mathematicians, some history, natural desiderata for a useful system, viewpoints on what kind of logic to use, a short explanation of how things work, an overview of different options for encoding sets, and perspectives on future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aczel, P. The type theoretic interpretation of constructive set theory, In: Macintyre etal (eds), Logic Colloquium 77, Springer, New York, 1977

  • Agerholm S., Gordon M.:(1995) Experiments with ZF set theory in HOL and Isabelle. In: Higher Order Logic Theorem Proving and its Applications (Aspen Grove, UT, 1995), Lecture Notes in Comput. Sci. 971, Springer, New York, . 32–45.

  • Alexandre G.: An axiomatisation of intuitionistic Zermelo–Fraenkel set theory. See http://coq.inria.fr/contribs-eng.html.

  • Alonso Tarrí o, L., Jeremí as López A.., Lipman J.: (1999). Studies in Duality on Noetherian Formal Schemes and Non-Noetherian Ordinary Schemes. Contemp. Math. 244 .Amer. Math. Soc. Providence.

  • Altenkirch T., McBride C. Generic programming within dependently typed programming, To appear, WCGP 2002. http://www.dur.ac.uk/c.t.mcbride/generic/

  • Barras B., Coquand T., Werner B.: Paradoxes in set theory and type theory.User-contribution of Coq. INRIA. Rocquencourt.

  • Bertot Y. Castéran P.: Coq’Art. Book in press.

  • Boom H.: Message on [101], Feb. 16, 2001.

  • R. Boyer J.S. Moore (1979) A Computational Logic ACM Monogr Ser Academic Press New York

    Google Scholar 

  • Bledsoe W.W., Boyer R., Henneman W. (1971). Computer proofs of limit theorems. IJCAI . 586–600

  • R. Boyer (Eds) (1991) Automated Reasoning: Essays in Honor of Woody Bledsoe Automated Reasoning Ser. Kluwer Acad. Publ Dordrecht

    Google Scholar 

  • Bundy A..:(1999) A survey of automated deduction, In: Michael J. Wooldridge and Manuela Veloso (ed.), Artificial Intelligence Today. Recent Trends and Developments, Lecture Notes in Comput. Sci. 1600, Springer, New York, . 153–174

  • Capretta V.: Universal Algebra in Coq.http://www-sop.inria.fr/Venanzio.Capretta/ universal_algebra.html.

  • Chicli, L.: Sur la formalisation des mathématiques dans le calcul des constructions Inductives, Thesis, Université de Nice-Sophia Antipolis (Nov. 2003). http://www-sop.inria. fr/lemme/Laurent.Chicli/these_chicli.ps.

  • L. Chicli L. Pottier C. Simpson (2003) Mathematical quotients and quotient types in Coq H. Geuvers F. Wiedijk (Eds) Types for Proofs and Programs, Lecture Notes in Comput. Sci. 2646 Springer New York 95–107

    Google Scholar 

  • Coquand, T.: An analysis of Girard’s paradox, In: Proc. LICS, IEEE Press, 1985.

  • J. Courant (2002) Explicit universes for the calculus of constructions V. Carreño C. Muñoz S. Tahar (Eds) Theorem Proving in Higher Order Logics 2002, Lecture Notes in Comput. Sci. 2410 Springer New York 115–130

    Google Scholar 

  • Cuihtlauac, A.: Reflexion pour la reecriture dans le calcul de constructions inductives, Thesis, 18 Dec. 2002.

  • L. Cruz-Filipe (2003) A constructive formalization of the fundamental theorem of calculus H. Geuvers F. Wiedijk (Eds) Types for Proofs and Programs, Lecture Notes in Comput. Sci. 2646 Springer New York 108–126

    Google Scholar 

  • P. Deligne J. S. Milne A. Ogus K. Shih (1982) Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Comput. Sci. 900 Springer New York

    Google Scholar 

  • Feferman, S.: Typical ambiguity: trying to have your cake and eat it too, to appear in the proceedings of the conference Russell 2001, Munich, 2–5 June 2001.

  • M. Fiore G. Rosolini (1997) ArticleTitleTwo models of synthetic domain theory J. Pure Appl. Algebra. 116 151–162

    Google Scholar 

  • Fitelson, B., Ulrich, D. and Wos, L.: XCB, the last of the shortest single axioms for the classical equivalential calculus, cs.LO/0211015, and Vanquishing the XCB question: the methodology discovery of the last shortest single axiom for the equivalential calculus, cs.LO/0211014.

  • H. Friedman (1998) ArticleTitleFinite functions and the necessary use of large cardinals Ann Math 148 IssueID3 803–893

    Google Scholar 

  • D. Gabai G.R. Meyerhoff N. Thurston (2003) ArticleTitleHomotopy hyperbolic 3-manifolds are hyperbolic Ann. Math. 157 335–431

    Google Scholar 

  • Geuvers, H.: Inconsistency of classical logic in type theory. http://www.cs.kun.nl/ herman/note.ps.gz. See also other publications at http://www.cs.kun.nl/herman/ pubs.html.

  • Geuvers, H. Barendregt, H. Proof assistants using dependent type systems, Chapter 18 of A. Robinson and A. Voronkov (eds), Handbook of Automated Reasoning, Vol 2, Elsevier, Amsterdam, 2001, pp. 1149–1238.

  • Geuvers, H., Wiedijk, F., Zwanenburg, J., Pollack, R. and Barendregt, H.: A formalized proof of the fundamental theorem of algebra in the theorem prover Coq, Contributions to Coq V.7, April 2001, http://coq.inria.fr/contribs/fta.html.

  • Girard, J.-Y.: Interpretation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieure, Thèse d’Etat, Université Paris 7 (1972).

  • Gordon, M. From LCF to HOL: a short history. Proof, Language, and Interaction, Found. Comput. Ser., MIT Press, 2000, pp. 169–185.

  • Hales, T.: The Flyspeck Project Fact Sheet. http://www.math.pitt.edu/thales/flyspeck/ index.html.

  • Harrison, J.: Formalized mathematics. (1996). http://www.cl.cam.ac.uk/users/jrh/papers/ form-math3.html, see also an html version at http://www.rbjones.com/rbjpub/logic/ jrh0100.htm.

  • Herbelin, H.: A program from an A-translated impredicative proof of Higman’s Lemma. User-contribution in [82], see http://coq.inria.fr/contribs/higman.html.

  • Holmes, R.: Undefined terms, and the thread of messages following it (in particular J. Harrison’s reply), Volume 3, May 1995.

  • Hohti, A.: Recursive synthesis and the foundations of mathematics. HO/0208184

  • Huet, G.: Unification in typed lambda calculus, In: λ- Calculus and Computer Science Theory (Proc. Sympos., Rome, 1975), Lecture Notes in Comput. Sci. 37, Springer, New York, 1975, pp. 192–212.

  • Huet, G. and Saï bi, A.: Constructive category theory, In: Proof, Language, and Interaction, Found. Comput. Ser., MIT Press, 2000, pp. 239–275

  • Jutting, L. and van Bentham, S.: Checking Landau’s Grundlagen in the AUTOMATH system. Thesis, Eindhoven University of Technology, 1977.

  • M. Kaufmann J. S. Moore (2002) A computational logic for applicative common LISP D. Jacquette (Eds) A Companion to Philosophical Logic Blackwell Oxford 724–741

    Google Scholar 

  • Kitoda, H. Is mathematics consistent? math.GM/0306007.

  • K. Kunen A. Ramsey (1995) ArticleTitleTheorem in Boyer–Moore logic J. Automat. Reason. 15 217–235

    Google Scholar 

  • C. Lam L. Thiel S. Swiercz (1989) ArticleTitleThe nonexistence of finite projective planes of order 10 Canad. J. Math. 41 1117–1123

    Google Scholar 

  • C. Lam L. Thiel S. Swiercz J. McKay (1983) ArticleTitleThe nonexistence of ovals in a projective plane of order 10 Discrete Math. 45 319–321

    Google Scholar 

  • Lamport L. Types considered harmful, or Types are not harmless. This appeared under the first title in a posting by P. Rudnicki on [100] Volume 2, Aug. 1994. A revised version with the second title appeared as a technical report. A balanced discussion presenting both points of view is in the next reference.

  • Lamport, L. Paulson, L. Should your specification language Be typed? ACM Trans. Programming Languages and Systems 21 (3) (May 1999), 502–526. See http://research.microsoft.com/users/lamport/pubs/pubs.html.

  • Luo, Z. An extended calculus of constructions, Thesis, University of Edinburgh, 1990.

  • Maggesi, M. Proof of JMeq_eq, see posting on [101], Oct. 17th 2002, http://www.math.unifi.it/~maggesi/coq/jmeq.v.

  • Martin-Löf, P. Intuitionistic Type Theory, Studies in Proof Theory, Bibliopolis, 1984.

  • J. McCarthy (1960) ArticleTitleRecursive functions of symbolic expressions and their computation by machine (Part I) CACM 3 184–195

    Google Scholar 

  • McCarthy, J. Towards a mathematical science of computation. Proc. Information Processing Congn. 62: North-Holland, Amsterdam, 1962, pp. 21–28.

  • J. McCarthy (1963) A basis for a mathematical theory of computation Computer Programming and Formal Systems. North-Holland Amsterdam

    Google Scholar 

  • McCune. W. and Veroff. R. A short Sheffer axiom for Boolean algebra. http://www.cs.unm.edu/moore/tr/00-07/veroffmccune.ps.gz http://www.cs.unm.edu/veroff/, http://www.mcs.anl.gov/mccune.

  • McKinna, J. Reply to thread How to prove two constructors are different, on [101] 6 Oct. 2003.

  • Milner, R. LCF: a way of doing proofs with a machine, In: Mathematical Foundations of Computer Science (Proc. Eighth Sympos., Olomouc, 1979), Lecture Notes in Comput. Sci. 74, Springer New York 1979, pp. 146–159.

  • Moerdijk, I. and MacLane, S. Sheaves in Geometry and Logic, Springer, New York, 1992.

  • J.S. Moore (1979) ArticleTitleA mechanical proof of the termination of Takeuchi’s function Inform. Process. Lett. 9 176–181

    Google Scholar 

  • A. Neeman (2002) ArticleTitleA counterexample to a 1961 theorem in homological algebra Invent. Math. 148 397–420

    Google Scholar 

  • Nowak, D. Ensembles and the axiom of choice, on [101], 25 Nov. 1998.

  • O’Connor, R. Proof of Gödel’s first incompleteness theorem http://math.berkeley. edu/roconnor/godel.html.

  • Melville, D. J. Sumerian metrological numeration systems*. The relevance of ancient numbering systems as one of the origins of formalized mathematics was mentionned in [32] .http://it.stlawu.edu/ dmelvill/mesomath/sumerian.html.

  • Plotkin, B. Algebraic geometry in first order logic, math.GM/0312485.

  • QED manifesto, http://www-unix.mcs.anl.gov/qed/manifesto.html.

  • J. Robinson (1963) ArticleTitleA. Theorem-proving on the computer J. Assoc. Comput. Mach. 10 163–174

    Google Scholar 

  • J.A. Robinson (1965) ArticleTitleA machine-oriented logic based on the resolution principle J. Assoc. Comput. Mach. 12 23–41

    Google Scholar 

  • D. Russinoff (1992) ArticleTitleA mechanical proof of quadratic reciprocity J. Automat. Reason. 8 3–21

    Google Scholar 

  • Schmidhuber, C. Strings from logic. CERN-TH/2000-316, hep-th/0011065.

  • Scott, D. Domains for denotational semantics, In: Automata, Languages and Programming (Aarhus, 1982), Lecture Notes in Comput. Sci. 140, Springer, New York, 1982, pp. 577–613.

  • N. Shankar (1988) ArticleTitleA mechanical proof of the Church-Rosser theorem J. Assoc. Comput. Mach. 35 475–522

    Google Scholar 

  • Shankar N. Metamathematics, Machines, and Gödel’s Proof, Cambridge Tracts in Theoretical Comput. Sci. 38, Cambridge University Press, 1994.

  • Shimada, I. Vanishing cycles, the generalized Hodge conjecture, and Gröbner bases, math.AG/0311180.

  • Simpson, A. Computational adequacy in an elementary topos, Proceedings CSL ‘98, Leucture Notes in Comput. Sci. 1584, Springer, New York, 1998, pp. 323–342.

  • Simpson, C. Set-theoretical mathematics in Coq, Preprint with attached proof files, math.LO/0402336.

  • Simpson, S. (ed): Reverse Mathematics 2001, to appear.

  • Streicher, T. Lifting Grothendieck universes (with M. Hofmann); and Universes in toposes. Preprints available at http://www.mathematik.tu-darmstadt.de/~streicher/.

  • Trybulec A. (1978). The Mizar-QC/6000 Logic Information Language. ALLC Bull. 6(2)

  • M. Wenzel F. Wiedijk (2002) ArticleTitleA comparison of Mizar and Isar. J. Automat Reason. 29 389–411

    Google Scholar 

  • Werner, B. Sets in types, types in sets, In: Theoretical Aspects of Computer Software (Sendai 1997), Lecture Notes in Comput. Sci. 1281, Springer, New York, 1999, pp. 530–546. http://pauillac.inria.fr/werner/publis/zfc.ps.gz.

  • Werner, B. An encoding of Zermolo-Fraenkel set theory in Coq:see http://coq.inria. fr/contribs-eng.html.

  • Werner, B. Une théorie des constructions inductives, Thèse d’Etat, Univ. Paris 7 (1994).

  • ACL2 system: http://www.cs.utexas.edu/users/moore/acl2/acl2-doc.html.

  • Alfa system (formerly ALF): http://www.math.chalmers.se/~hallgren/Alfa/.

  • Coq system: http://coq.inria.fr/, especially the reference manual: http://coq.inria.fr/doc/ main.html.

  • Ghilbert system: http://www.ghilbert.org/.

  • Helm Coq-on-line library (University of Bologna): http://www.cs.unibo.it/helm/ library.html.

  • HOL system: http://www.afm.sbu.ac.uk/archive/formal-methods/hol.html.

  • HOL-Light: http://www.cl.cam.ac.uk/users/jrh/hol-light/.

  • IMPS system, see particularly the theory library: http://imps.mcmaster.ca/.

  • Metamath system: http://www.metamath.org/.

  • Isabelle system: http://www.cl.cam.ac.uk/Research/HVG/Isabelle/.

  • The Elf meta-language. http://www-2.cs.cmu.edu/~fp/elf.html.

  • LEGO system: http://www.dcs.ed.ac.uk/home/lego/.

  • Mizar system: http://mizar.uw.bialystok.pl/.

  • Nuprl system: http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html.

  • The PhoX proof assistant: http://www.lama.univ-savoie.fr/sitelama/Membres/pages_web/ RAFFALLI/af2.html.

  • PVS (Proof Verification System): http://pvs.csl.sri.com/.

  • TPS (Theorem Proving System): http://gtps.math.cmu.edu/tps.html.

  • Z/EVES system, see particularly the Mathematical Toolkit: http://www.ora.on.ca/ z-eves/.

  • Formal Methods web page at Oxford (this has a very complete listing of items on the web concerning formal methods): http://www.afm.sbu.ac.uk/.

  • Pfenning, F. Bibliography on logical frameworks (449 entries!) http://www-2.cs. cmu.edu/fp/lfs-bib.html.

  • The QED project (see particularly the archives of the QED mailing list, volumes 1–3): http://www-unix.mcs.anl.gov/qed/.

  • Coq-club mailing list archives: http://pauillac.inria.fr/coq/.

  • Jo. Formalized Math.: http://mizar.uw.bialystok.pl/JFM/.

  • arXiv e-Print archive http://arXiv.org/.

  • MathSci Net. http://www.ams.org/mathscinet (by subscription).

  • The Google search engine. http://www.google.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Simpson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, C. Computer Theorem Proving in Mathematics. Lett Math Phys 69, 287–315 (2004). https://doi.org/10.1007/s11005-004-0607-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-004-0607-9

Keywords

Navigation