Skip to main content

Advertisement

Log in

Inversion of Time-Lapse Electric Potential Data to Estimate Fracture Connectivity in Geothermal Reservoirs

  • Special Issue
  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

An inverse modeling approach was developed to characterize fracture connectivity in geothermal reservoirs using an injection of a conductive fluid and time-lapse electric potential measurements. Discrete fracture networks with sparsely connected fractures were modeled and a flow simulator was used to solve electric fields as a conductive tracer flows through the fracture networks. The electric potential difference between well pairs drops progressively in time as the conductive fluid fills interconnected fractures along paths from the injector toward the producer. Therefore, the fractional connected area of reservoirs could be estimated using inverse modeling to match the response to other fracture networks by comparing time histories of the electric potential. This method was compared to estimating fractional connected area using tracer return curves alone and the study showed that locations of connected areas were estimated better using the electric potential approach. A sensitivity analysis was performed to study the effect of fractional connected area on time-lapse electric potential and tracer return data. The study verified the advantages of using electric potential measurements instead of only the tracer return curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans AIME 146(99):54–67

    Article  Google Scholar 

  • Babadagli T (2001) Fractal analysis of 2-D fracture networks of geothermal reservoirs in south-western Turkey. J Volcanol Geotherm Res 112(1):1–4. doi:10.1016/S0377-0273(01)00236-0

    Google Scholar 

  • Barton CC, Larsen E (1985) Fractal geometry of two-dimensional fracture networks at Yucca Mountain, southwestern Nevada. In: Proceedings of the international symposium on fundamentals of rock Joints, pp 77–84

  • Beall JJ, Michael C, Adams MC, Hirtz PN (1994) R-13 tracing of injection in The Geysers. Trans Geotherm Res Council 18:151–159

    Google Scholar 

  • Berkowitz B (1995) Analysis of fracture network connectivity using percolation theory. Math Geol 27:467–483. doi:10.1007/BF02084422

    Article  Google Scholar 

  • Binley A, Cassiani G, Middleton R, Winship P (2002) Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging. J Hydrol 267(3):147–159. doi:10.1016/S0022-1694(02)00146-4

    Article  Google Scholar 

  • Binley A, Henry-Poulter S, Shaw B (1996) Examination of solute transport in an undisturbed soil column using electrical resistance tomography. Water Resour Res 32(4):763–769. doi:10.1029/95WR02995

    Article  Google Scholar 

  • Bunde A, Havlin S (1995) Fractals in science. Springer, Heidelberg

  • Cao H (2002) Development of techniques for general purpose simulators, PhD Thesis. Stanford University, CA, USA

  • Cassiani G, Brunoa V, Villa A, Fusi N, Binley A (2006) A saline trace test monitored via time-lapse surface electrical resistivity tomography. J Appl Geophys 59(3):244–259. doi:10.1016/j.jappgeo.2005.10.007

    Article  Google Scholar 

  • Chen J, Hubbard SS, Gaines D, Korneev V, Baker G, Watson D (2010) Stochastic estimation of aquifer geometry using seismic refraction data with borehole depth constraints. Water Resour Res 46:11. doi:10.1029/2009WR008715

    Google Scholar 

  • Day-Lewis FD, Lane JW Jr, Harris JM, Gorelick SM (2003) Time-lapse imaging of saline-tracer transport in fractured rock using difference-attenuation radar tomography. Water Resour Res 39(10):1290. doi:10.1029/2002WR001722

    Google Scholar 

  • Fossum MP, Horne RN (1982) Interpretation of tracer return profiles at Wairakei geothermal field using fracture analysis. Trans Geotherm Resour Council 6:261–264

    Google Scholar 

  • Fukuda D, Akatsuka T, Sarudate M (2006) Characterization of inter-well connectivity using alcohol tracer and steam geochemistry in the Matsukawa vapor dominated geothermal field, Northeast Japan. Trans Geotherm Resour Council 30:797–801

    Google Scholar 

  • Garambois S, Senechal P, Perroud H (2002) On the use of combined geophysical methods to assess water content and water conductivity of near-surface formations. J Hydrol 259(1):32–48. doi:10.1016/S0022-1694(01)00588-1

    Article  Google Scholar 

  • Garg SK, Pritchett JW, Wannamaker PE, Combs J (2007) Characterization of geothermal reservoirs with electrical surveys: Beowawe geothermal field. Geothermics 36(6):487–517. doi:10.1016/j.geothermics.2007.07.005

    Article  Google Scholar 

  • Ghosh K, Mitra S (2009) Two-dimensional simulation of controls of fracture parameters on fracture connectivity. AAPG Bull 93:1517–1533. doi:10.1306/07270909041

    Article  Google Scholar 

  • Axelsson G, Bjornsson G, Montalvo F (2005) Quantitative interpretation of tracer test data. Proceedings World geothermal congress, Antalya, Turkey, 24–29 April

  • Harthill N (1978) A quadripole resistivity survey of the Imperial Valley, California. Geophysics 43(7):1485–1500. doi:10.1190/1.1440910

    Article  Google Scholar 

  • Hochstein MP, Hunt TM (1970) Seismic, gravity and magnetic studies, broadlands geothermal field, New Zealand. Geothermics 2:333–346. doi:10.1016/0375-6505(70)90032-5

    Article  Google Scholar 

  • Holder DS (2004) Electrical impedance tomography: methods, history and applications. IPO, UK

  • Horne RN (1983) Effects of water injection into fractured geothermal reservoirs, a summary of experience worldwide. Trans Geotherm Resour Council 12:47–63

    Google Scholar 

  • Hubbard SS, Chen J, Peterson J, Majer EL, Williams KH, Swift DJ, Mailloux B, Rubin Y (2001) Hydrogeological characterization of the south oyster bacteria transport site using geophysical data. Water Resour Res 37:2431–2456. doi:10.1029/2001WR000279

    Article  Google Scholar 

  • Irving J, Singha K (2010) Stochastic inversion of tracer test and electrical geophysical data to estimate hydraulic conductivities. Water Resour Res 46:11. doi:10.1029/2009WR008340

    Google Scholar 

  • Jeannin M, Garambois S, Greegoire D, Jongmans D (2006) Multiconfiguration GPR measurements for geometric fracture characterization in limestone cliffs (Alps). Geophysics 71:85–92. doi:10.1190/1.2194526

    Article  Google Scholar 

  • Karimi-Fard M, Durlofsky LJ, Aziz K (2003) An efficient discrete fracture model applicable for general purpose reservoir simulators. SPE Reservoir Simulation Symposium, Houston

    Google Scholar 

  • Keller GV, Frischknecht FC (1996) Electrical methods in geophysical prospecting. PressPergamon, Oxford

  • Koestel J, Kemna A, Javaux M, Binley A, Vereecken H (2008) Quantitative imaging of solute transport in an unsaturated and undisturbed soil monolith with 3-D ERT and TDR. Water Resour Res 44:12. doi:10.1029/2007WR006755

    Google Scholar 

  • Lambot S, Antoinea M, van den Boschb I, Slobc EC, Vancloostera M (2004) Electromagnetic inversion of GPR signals and subsequent hydrodynamic inversion to estimate effective vadose zone hydraulic properties. Vadose Zone J 3:1072–1081. doi:10.2136/vzj2004.1072

    Article  Google Scholar 

  • Magnusdottir L, Horne RN (2012) Characterization of fractures in geothermal reservoirs using resistivity. Proceedings, 37th workshop on geothermal reservoir engineering. Stanford University, Stanford

  • Magnusdottir L, Horne RN (2013) Fracture connectivity of fractal fracture networks estimated using electrical resistivity. In: Proceedings, 38th workshop on geothermal reservoir engineering. Stanford University, Stanford

  • Main IG, Meredith PG, Sammonds PR, Jones C (1990) Influence of fractal flaw distributions on rock deformation in the brittle field. In: Knipe RJ, Rutter EH (eds) Geological society, London, Special Publications, vol 54.1, pp 81–96. doi:10.1144/GSL.SP.1990.054.01.09

  • Muskat M (1932) Potential distributions in large cylindrical disks with partially penetrating electrodes. Physics 2:329–364. doi:10.1063/1.1745061

    Article  Google Scholar 

  • Nakaya S, Yoshida T, Shioiri N (2003) Perlocation conditions in binary fractal fracture networks: applications to rock fractures and active and seismogenic faults. J Geophys Res 108:2348. doi:10.1029/94WR02260

    Google Scholar 

  • Odling NE (1997) Scaling and connectivity of joint systems in sandstones from western Norway. J Struct Geol 19:1251–1271. doi:10.1016/S0191-8141(97)00041-2

    Article  Google Scholar 

  • Oldenborger GA, Knoll MD, Routh PS, LaBrecque DJ (2007) Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer. Geophysics 72:177–187. doi:10.1190/1.2734365

    Google Scholar 

  • Olsen PA, Binley A, Henry-Poulter S, Tych W (1999) Characterizing solute transport in undisturbed soil cores using electrical and x-ray tomographic methods. Hydrol Process 13:211–221 doi:10.1002/(SICI)1099-1085(19990215)13:2<211:AID-HYP707>3.0.CO;2-P

  • Olson JE (2003) Sublinear scaling of fracture aperture versus length: an exception or the rule? J Geophys Res 108:2413. doi:10.1029/2001JB000419

    Article  Google Scholar 

  • Parra JO, Hackert CL, Bennett MW (2006) Permeability and porosity images based on P-wave surface seismic data: application to a south Florida aquifer. Water Resour Res 42:2. doi:10.1029/2005WR004114

    Google Scholar 

  • Peitgen HO, Jurgens H, Saupe D (1990) Chaos and fractals. Springer, New York

    Google Scholar 

  • Rouleau A, Gale JE (1985) Statistical characterization of the fracture system in the Stripa granite. Int J Rock Mech Mining Sci Geomech Abstr 22(6):53–367. doi:10.1016/0148-9062(85)90001-4

    Google Scholar 

  • Shaw HR, Gartner AE (1986) On the graphical interpretation of paleoseismic data. US Geological Survey Open-File Report, pp 86–394

  • Shewchuk JR (1996) Triangle: engineering a 2D quality mesh generator and delaunay triangulator. Applied Computational Geometry Towards Geometric Engineering, vol 1148, pp 203–333. doi:10.1007/BFb0014497

  • Shook GM (2001) Predicting thermal breakthrough in heterogeneous media from tracer tests. Geothermics 30(6):573–589. doi:10.1016/S0375-6505(01)00015-3

    Article  Google Scholar 

  • Sierpinski W (1915) Sur une courbe dont tout point est un point de ramication. C R Acad 160:302

    Google Scholar 

  • Singha K, Day-Lewis FD, Moysey S (2007) Accounting for tomographic resolution in estimating hydrologic properties from geophysical data. Geophysics 171:227–241. doi:10.1029/171GM16

    Google Scholar 

  • Singha K, Gorelick SM (2005) Saline tracer visualized with three-dimensional electrical resistivity tomography: field-scale spatial moment analysis. Water Resour Res 41:5. doi:10.1029/2004WR003460

    Google Scholar 

  • Singha K, Gorelick SM (2006) Hydrogeophysical tracking of three-dimensional tracer migration: the concept and application of apparent petrophysical relations. Water Resour Res 42:6. doi:10.1029/2005WR004568

    Google Scholar 

  • Slater L, Binley AM, Daily W, Johnson R (2002) Cross-hole electrical imaging of a controlled saline tracer injection. J Appl Geophys 44:85–102. doi:10.1016/S0926-9851(00)00002-1

    Article  Google Scholar 

  • Stauffer D (1985) Introduction to percolation theory. Taylor and Francis, London

    Book  Google Scholar 

  • Ucok H, Ershaghi I, Olhoeft GR (1980) Electrical resistivity of geothermal brines. J Petroleum Technol 32(4):717–727. doi:10.2118/7878-PA

    Article  Google Scholar 

  • Wu X, Pope GA, Shook GM, Srinivasan S (2008) Prediction of enthalpy production from fractured geothermal reservoirs using partitioning tracers. Int J Heat Mass Transfer 51(5):1453–1466. doi:10.1016/j.ijheatmasstransfer.2007.06.023

    Article  Google Scholar 

  • Xu C, Dowd PA, Mardia KV, Fowell RJ (2006) A connectivity index for discrete fracture networks. Mathem Geol 38:611–634. doi:10.1007/s11004-006-9029-9

    Article  Google Scholar 

  • Yeh TCJ, Liu S, Glass RJ, Baker K, Brainard JR, Alumbaugh DL, LaBrecque D (2002) A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology. Geophysics 38(12):14-1:1413. doi:10.1029/2001WR001204

    Google Scholar 

Download references

Acknowledgments

This research was supported by the US Department of Energy, under Contract DE-EE0005516. The Stanford Geothermal Program is grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilja Magnusdottir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnusdottir, L., Horne, R.N. Inversion of Time-Lapse Electric Potential Data to Estimate Fracture Connectivity in Geothermal Reservoirs. Math Geosci 47, 85–104 (2015). https://doi.org/10.1007/s11004-013-9515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-013-9515-9

Keywords

Navigation