Skip to main content

Advertisement

Log in

An Uncertainty Quantification Framework for Studying the Effect of Spatial Heterogeneity in Reservoir Permeability on CO2 Sequestration

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

A new uncertainty quantification framework is adopted for carbon sequestration to evaluate the effect of spatial heterogeneity of reservoir permeability on CO2 migration. Sequential Gaussian simulation is used to generate multiple realizations of permeability fields with various spatial statistical attributes. In order to deal with the computational difficulties, the following ideas/approaches are integrated. First, different efficient sampling approaches (probabilistic collocation, quasi-Monte Carlo, and adaptive sampling) are used to reduce the number of forward calculations, explore effectively the parameter space, and quantify the input uncertainty. Second, a scalable numerical simulator, extreme-scale Subsurface Transport Over Multiple Phases, is adopted as the forward modeling simulator for CO2 migration. The framework has the capability to quantify input uncertainty, generate exploratory samples effectively, perform scalable numerical simulations, visualize output uncertainty, and evaluate input-output relationships. The framework is demonstrated with a given CO2 injection scenario in heterogeneous sandstone reservoirs. Results show that geostatistical parameters for permeability have different impacts on CO2 plume radius: the mean parameter has positive effects at the top layers, but affects the bottom layers negatively. The variance generally has a positive effect on the plume radius at all layers, particularly at middle layers, where the transport of CO2 is highly influenced by the subsurface heterogeneity structure. The anisotropy ratio has weak impacts on the plume radius, but affects the shape of the CO2 plume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Atanassov E, Ivanovska S, Karaivanova A (2010) Tuning the generation of Sobol sequence with Owen scrambling. In: Proceedings of LSSC09 (accepted for publication). In: LNCS, vol 5910, pp 459–466 (to appear). ISSN: 0302-9743

    Google Scholar 

  • Balay S, Brown J, Buschelman K, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInness LC, Smith BF, Zhang H (2011) PETSc users manual, ANL-95/11, Revision 3.2. Argonne National Laboratory, Argonne, 211 pp

    Google Scholar 

  • Barnes DA, Bacon DH, Kelley SR (2009) Geological sequestration of carbon dioxide in the Cambrian Mount Simon sandstone: regional storage capacity, site characterization, and large scale injection feasibility; Michigan Basin, USA. Environ Geosci 16(3):163–183. doi:10.1306/eg.05080909009

    Article  Google Scholar 

  • Brooks RH, Corey AT (1966) Properties of porous media affecting fluid flow. J Irrig Drain Div 93(3):61–88

    Google Scholar 

  • Burdine NT (1953) Relative permeability calculations from pore-size distribution data. Pet Trans AIME 198:71–77

    Google Scholar 

  • Caflisch RE (1998) Monte Carlo and quasi-Monte Carlo methods. In: Iserles A (ed) Acta Numerica, vol 7. Cambridge University Press, Cambridge, pp 1–49. 1998. doi:10.1017/S0962492900002804

    Google Scholar 

  • Cools R (1999) Monomial cubature rules since “Stroud”: a compilation—part 2. J Comput Appl Math 112:21–27. doi:10.1016/0377-0427(93)90027-9

    Article  Google Scholar 

  • Cools R, Rabinowitz P (1993) Monomial cubature rules since “Stroud”: a compilation. J Comput Appl Math 48:309–326. doi:10.1016/0377-0427(93)90027-9

    Article  Google Scholar 

  • Dawson R, Hall J (2006) Adaptive importance sampling for risk analysis of complex infrastructure systems. Proc R Soc A 462:3343–3362. doi:10.1098/rspa.2006.1720

    Article  Google Scholar 

  • Deutsch CV (2002) Geostatistical reservoir modeling, 1st edn. Oxford University Press, New York, 384 pp

    Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and user’s guide, 2nd edn. Oxford University Press, New York, 384 pp

    Google Scholar 

  • Dick J, Pillichshammer F (2010) Digital nets and sequences: discrepancy theory and quasi-Monte Carlo integration. Cambridge University Press, Cambridge, UK, 618 pp

    Google Scholar 

  • Eccles JK, Pratson L, Newell NG, Jackson RB (2009) Physical and economic potential of geological CO2 sequestration in saline aquifers. Environ Sci Technol 43(6):1962–1969. doi:10.1021/es801572e

    Article  Google Scholar 

  • Engel DW, Liebetrau AM, Jarman KD, Ferryman TA, Scheibe TD, Didier BT (2004) An iterative uncertainty assessment technique for environmental modeling. In: Mowrer HT, McRoberts R, VanDeusen PC (eds) The joint proceedings of the accuracy and environmetrics, 2004 conferences. http://www.spatial-accuracy.org/system/files/Engel2004accuracy.pdf

    Google Scholar 

  • Fayer MJ, Simmons CS (1995) Modified soil water retention functions for all matric suctions. Water Resour Res 31:1233–1238

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19(1):1–66

    Article  Google Scholar 

  • Givens GH, Raftery AE (1996) Local adaptive importance sampling for multivariate densities with strong nonlinear relationships. J Am Stat Assoc 91(433):132–141

    Article  Google Scholar 

  • Hou Z, Rubin Y (2005) On MRE concepts and prior compatibility issues in vadose zone inverse and forward modeling. Water Resour Res 41:W12425. doi:10.1029/2005WR004082

    Article  Google Scholar 

  • Hou Z, Rockhold ML, Murray CJ (2012a) Evaluating the impact of caprock and reservoir properties on potential risk of CO2 leakage after injection. Environ Earth Sci 66(8):2403–2415. doi:10.1007/s12665-011-1465-2

    Article  Google Scholar 

  • Hou Z, Huang M, Leung LR, Lin G, Ricciuto DM (2012b) Sensitivity of surface flux simulations to hydrologic parameters based on an uncertainty quantification framework applied to the Community Land Model. J Geophys Res 117:D15108

    Article  Google Scholar 

  • Hou Z, Rubin Y, Hoversten GM, Vasco D, Chen J (2006) Reservoir parameter identification using minimum relative entropy-based Bayesian inversion of seismic AVA and marine CSEM data. Geophysics 71(6):O77–O88

    Article  Google Scholar 

  • Izgec O, Demiral B, Bertin H, Akin S (2008) CO2 injection into saline carbonate aquifer formations I: laboratory investigation. Transp Porous Media 72:1–24. doi:10.1007/s11242-007-9132-5

    Article  Google Scholar 

  • Kitanidis PK (1997) Introduction to geostatistics: applications in hydrogeology. Cambridge University Press, Cambridge, UK, 272 pp

    Book  Google Scholar 

  • Knauss KG, Johnson JW, Steefel CI (2005) Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geological sequestration of CO2. Chem Geol 217:339–350

    Article  Google Scholar 

  • Lin G, Tartakovsky AM (2009) An efficient, high-order probabilistic collocation method on sparse grids for three-dimensional flow and solute transport in randomly heterogeneous porous media. Adv Water Resour 32(5):712–722. doi:10.1016/j.advwatres.2008.09.003

    Article  Google Scholar 

  • Message Passing Interface Forum (2009). http://www.mpi-forum.org/

  • Nieplocha J, Palmer B, Tipparaju V, Krishnan M, Trease H, Apra E (2006) Advances, applications and performance of the Global Arrays shared memory programming toolkit. Int J High Perform Comput Appl 20(2):203–231. doi:10.1177/1094342006064503

    Article  Google Scholar 

  • Nordbotten JM, Celia MA, Bachu S (2005) Injection and storage of CO2 in deep saline aquifers: analytical solution for CO2 plume evolution during injection. Transp Porous Media 58(3):339–360. doi:10.1007/s11242-004-0670-9

    Article  Google Scholar 

  • Oldenburg CM, Unger AJA (2003) On leakage and seepage from geologic carbon sequestration sites: unsaturated zone attenuation. Vadose Zone J 2:287–296. doi:10.2113/2.3.287

    Google Scholar 

  • Pruess K (2008) On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir. Environ Geol 54(8):1677–1686. doi:10.1007/s00254-007-0945-x

    Article  Google Scholar 

  • Rutqvist J, Birkholzer JT, Cappa F, Tsang C-F (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers Manag 48(6):1798–1807

    Article  Google Scholar 

  • Smolyak S (1963) Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov Math Dokl 4:240–243

    Google Scholar 

  • Sobol IM (1967) Distribution of points in a cube and approximate evaluation of integrals. USSR Comput Math Math Phys 7:86–112

    Article  Google Scholar 

  • Sobol IM, Shukhman BV (2007) Quasi-random points keep their distance. Math Comput Simul 75(3–4):80–86. doi:10.1016/j.matcom.2006.09.004

    Article  Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics, Philadelphia, 352 pp

    Book  Google Scholar 

  • Wang X (2009) Dimension reduction techniques in quasi-Monte Carlo methods for option pricing. INFORMS J Comput 21(3):488–504

    Article  Google Scholar 

  • White MD, Oostrom M (2006) STOMP—subsurface transport over multiple phases—version 4.0—user’s guide. PNNL-15782, Pacific Northwest National Laboratory, Richland, Washington, 120 pp

  • Woodbury AD, Ulrych TJ (1993) Minimum relative entropy—forward probabilistic modeling. Water Resour Res 29(8):2847–2860

    Article  Google Scholar 

  • Xiu D, Hesthaven JS (2005) High order collocation methods for differential equations with random inputs. SIAM J Sci Comput 27(3):1118–1139

    Article  Google Scholar 

Download references

Acknowledgements

This research has been accomplished and funded through Pacific Northwest National Laboratory’s Carbon Sequestration Initiative, which is part of the Laboratory Directed Research and Development Program. This study was conducted at the Pacific Northwest National Laboratory, operated by Battelle Memorial Institute for the US Department of Energy under Contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangshuan Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, Z., Engel, D.W., Lin, G. et al. An Uncertainty Quantification Framework for Studying the Effect of Spatial Heterogeneity in Reservoir Permeability on CO2 Sequestration. Math Geosci 45, 799–817 (2013). https://doi.org/10.1007/s11004-013-9459-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-013-9459-0

Keywords

Navigation