Skip to main content
Log in

On the Validity of Commonly Used Covariance and Variogram Functions on the Sphere

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

Covariance and variogram functions have been extensively studied in Euclidean space. In this article, we investigate the validity of commonly used covariance and variogram functions on the sphere. In particular, we show that the spherical and exponential models, as well as power variograms with 0<α≤1, are valid on the sphere. However, two Radon transforms of the exponential model, Cauchy model, the hole-effect model and power variograms with 1<α≤2 are not valid on the sphere. A table that summarizes the validity of commonly used covariance and variogram functions on the sphere is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkhaled AA, Michalak AM, Kawa SR, Olsen SC, Wang JW (2008) A global evaluation of the regional spatial variability of column integrated CO2 distributions. J Geophys Res 113:D20303. doi:10.1029/2007JD009693

    Article  Google Scholar 

  • Banerjee S (2005) On geodetic distance computations in spatial modeling. Biometrics 61:617–625

    Article  Google Scholar 

  • Bochner S (1941) Hilbert distances and positive definite functions. Ann Math 42:647–656

    Article  Google Scholar 

  • Carmona-Moreno C, Belward A, Malingreau JP, Hartley A, Garcia-Algere M, Antonovskiy M, Buchshtaber V, Pivovarov V (2005) Characterizing interannual variations in global fire calendar using data from Earth observing satellites. Glob Change Biol 11:1537–1555

    Article  Google Scholar 

  • Chen D, Menegatto V, Sun X (2003) A necessary and sufficient condition for strictly positive definite functions on spheres. Proc Am Math Soc 131:2733–2740

    Article  Google Scholar 

  • Chilès JP, Delfiner P (1999) Geostatistics. Wiley, New York

    Book  Google Scholar 

  • Cressie N (1985) Fitting variogram models by weighted least squares. Math Geol 17:563–586

    Article  Google Scholar 

  • Cressie N (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

    Article  Google Scholar 

  • Gangolli R (1967) Positive definite kernels on homogeneous spaces and certain stochastic processed related to Levy’s Brownian motion of several parameters. Ann Inst Henri Poincaré, B Calc Probab Stat 3:121–226

    Google Scholar 

  • Gneiting T (1998) Simple test for the validity of correlation function models on the circle. Stat Probab Lett 39:119–122

    Article  Google Scholar 

  • Gneiting T (1999) Correlation functions for atmospheric data analysis. Q J R Meteorol Soc 125:2449–2464

    Article  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (1994) Tables of integrals, series, and products, 5th edn. Academic Press, New York

    Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  • Hobson E (1931) The theory of spherical and ellipsoidal harmonics. Cambridge University Press, Cambridge

    Google Scholar 

  • Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Janis MJ, Robeson SM (2004) Determining the spatial representativeness of air-temperature records using variogram-nugget time series. Phys Geogr 25:513–530

    Article  Google Scholar 

  • Jun M, Stein ML (2007) An approach to producing space-time covariance functions on spheres. Technometrics 49:468–479

    Article  Google Scholar 

  • Karpushev SI (1985) Conditionally positive-definite functions on locally compact groups and the Levy–Khinchin formula. J Math Sci 28:489–498

    Article  Google Scholar 

  • Kitandis PK (1997) Introduction to geostatistics. University of Cambridge Press, Cambridge

    Book  Google Scholar 

  • Reguzzoni M, Sanso F, Venuti G (2005) The theory of general kriging, with applications to the determination of a local geoid. Geophys J Int 163:303–314

    Article  Google Scholar 

  • Robeson SM (1997) Spherical methods for spatial interpolation: review and evaluation. Cartogr Geogr Inf Syst 24:3–20

    Article  Google Scholar 

  • Sasvari Z (1994) Positive definite and definitizable functions. Akademie Verlag, Berlin

    Google Scholar 

  • Schäfer-Neth C, Paul A, Mulitza S (2005) Perspectives on mapping the MARGO reconstructions by variogram analysis/Kriging and objective analysis. Quat Sci Rev 24:1083–1093

    Article  Google Scholar 

  • Schoenberg IJ (1938) Metric spaces and positive definite functions. Trans Am Math Soc 44:522–536

    Article  Google Scholar 

  • Schoenberg IJ (1942) Positive definite functions on spheres. Duke Math J 9:96–108

    Article  Google Scholar 

  • Schreiner M (1997) On a new condition for strictly positive definite functions on spheres. Proc Am Math Soc 125:531–539

    Article  Google Scholar 

  • Stein ML (1999) Interpolation of spatial data. Springer, New York

    Book  Google Scholar 

  • Webster R, Oliver M (2001) Geostatistics for environmental scientists. Wiley, Chichester

    Google Scholar 

  • Wood ATA (1995) When is a truncated covariance function on the line a covariance function on the circle? Stat Probab Lett 24:157–164

    Article  Google Scholar 

  • Xu Y, Cheney EW (1992) Strictly positive definite functions on spheres. Proc Am Math Soc 116:977–981

    Article  Google Scholar 

  • Yadrenko MI (1983) Spectral theory of random fields. Optimization Software, Inc., Publications Division, New York

    Google Scholar 

  • Yaglom AM (1961) Second-order homogeneous random fields. In: Proceedings of 4th Berkeley symposium on mathematical statistics and probability, vol 2, pp 593–622

    Google Scholar 

  • Yaglom AM (1987) Correlation theory of stationary and related random functions. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunfeng Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Zhang, H. & Robeson, S.M. On the Validity of Commonly Used Covariance and Variogram Functions on the Sphere. Math Geosci 43, 721–733 (2011). https://doi.org/10.1007/s11004-011-9344-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-011-9344-7

Keywords

Navigation