Skip to main content

Advertisement

Log in

Feasibility Analysis of the Use of Binary Genetic Algorithms as Importance Samplers Application to a 1-D DC Resistivity Inverse Problem

  • Published:
Mathematical Geosciences Aims and scope Submit manuscript

Abstract

DC resistivity inverse problems are ill-posed. For the Vertical Electrical Sounding method the acceptable solutions lie in very narrow elongated-shape regions in the model space. To characterize this ensemble of solutions is a central question. In a Bayesian framework this issue is solved adopting as solution the so-called model posterior probability distribution. However, due to the nonlinearity of the problem, this distribution is not explicitly known, or it is difficult to calculate. Therefore, algorithms that efficiently sample the model space according to it (importance sampling) are very desirable. The main goal of this paper is to numerically explore the performance of binary genetic algorithms as posterior importance sampling strategies. Their behavior will be firstly analyzed using 2D synthetic posterior test functions bearing the relevant properties of the real geo-electrical inverse problem. The conclusions will be again checked through the histogram reconstruction of parameters in a synthetic VES case, and eventually, in a real, higher dimensional, sea-water coastal intrusion problem, by comparing the results with those obtained with a theoretically correct Metropolis-Hasting importance sampler (simulated annealing without cooling). Percentile curves are introduced as an effective tool for risk assessment. We show that binary genetic algorithms perform well under very general assumptions. When the roulette wheel is the selection method used, mutation is over 10%, and the algorithm does not incorporate elitism. The results do not depend on the values of the remaining tuning parameters. Finally, to improve the efficiency of the sampling strategy, we introduce a binary genetic algorithm with oriented search space. This is done with the help of linearization of the forward operator and singular value decomposition around the maximum posterior estimate. It is shown, also, that the logarithmic model parameterization is adequate for this task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cary PW, Chapmann CH (1988) Automatic 1-D waveform inversion of marine seismic refraction data. Geophys J R Astron Soc 93:527–546

    Google Scholar 

  • Chib S, Greenberg E (1995) Understanding the Metropolis–Hastings algorithm. Am Stat 49(4):327–335

    Article  Google Scholar 

  • Chunduru RK, Sen MK, Stoffa PL (1996) 2-D resistivity inversion using spline parameterization and simulated annealing. Geophysics 61(1):151–161

    Article  Google Scholar 

  • Curtis A, Lomax A (2001) Tutorial: prior information, sampling distributions and the curse of dimensionality. Geophysics 66(2):372–378

    Article  Google Scholar 

  • Fernández Alvarez P (2004) Análisis y resolución numérica de un problema inverso en geofísica medioambiental. Aplicación al caso de los sondeos eléctricos verticales. PhD thesis, Universidad de Oviedo

  • Fernández Alvarez P, Fernández Martínez JL, Menéndez Pérez CO (2004) A posteriori inference of model parameters in a geophysical inverse problem using GA. In: Soft methodology and random information systems. Advances in soft computing, pp 709–711

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  Google Scholar 

  • Goldberg DE (1989) Genetic Algorithms in search, optimization and machine learning. Addison-Wesley, Reading

    Google Scholar 

  • Gosh DP (1971a) The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements. Geophys Prospect 19:192–217

    Article  Google Scholar 

  • Gosh DP (1971b) Inverse filter coefficients for the computation of apparent resistivity standard curves for a horizontally stratified earth. Geophys Prospect 19:769–777

    Article  Google Scholar 

  • Gouveia W, Scales J (1997) Resolution of seismic waveform inversion: Bayes vs Occam. Inverse Probl 13:323–349

    Article  Google Scholar 

  • Hansen C (1998) Rank deficient and discrete ill-posed problems. Numerical aspects of linear inversion. Library of Congress, Philadelpia

    Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Instituto Geológico Minero de España (1988) Prospección geoléctrica en la zona de Águilas (Murcia). Internal report

  • Joines J, Houck C (1994) On the use of nonstationary penalty functions to solve constrained optimization problems with GA. In: IEEE international symposium on evolutionary computation, Orlando, FL, pp 579–584

  • Johanssen HK (1977) A man/computer interpretation system for resistivity soundings over a horizontally stratified earth. Geophys Prospect 25:667–691

    Article  Google Scholar 

  • Koefoed O (1979) Geosounding principles. Elsevier, Amsterdam

    Google Scholar 

  • Koren A, Mosegaard K, Landa E, Thore P, Tarantola A (1991) Monte Carlo estimation and resolution analysis of seismic background velocities. J Geophys Res 96:289–299

    Article  Google Scholar 

  • Maillet R (1947) The fundamental equations of electrical prospecting. Geophysics 12:529–556

    Article  Google Scholar 

  • Malinverno A (2000) A Bayesian criterion for simplicity in inverse problem parameterization. Geophys J Int 140:267–285

    Article  Google Scholar 

  • Michalewicz A (1992) Genetic algorithm + data structures = evolution programs. Springer, Berlin

    Google Scholar 

  • Mosegaard K (1998) Resolution analysis of general inverse problems through inverse Monte Carlo sampling. Inverse Probl 14:404–426

    Article  Google Scholar 

  • Mosegaard K, Sambridge M (2002) Monte Carlo Analysis of inverse problems. Inverse Probl 18:29–54

    Article  Google Scholar 

  • Mosegaard K, Tarantola A (1995) Monte Carlo sampling of solutions to inverse problems. J Geophys Res B 100(7):12431–12447

    Article  Google Scholar 

  • Orellana E (1982) Prospección geoeléctrica en corriente continua. Paraninfo, Madrid

    Google Scholar 

  • Pekeris CL (1940) Direct method of interpretation in resistivity prospecting. Geophysics 5:31–42

    Article  Google Scholar 

  • Rothman DH (1985) Nonlinear inversion statistical mechanics and residual statics corrections. Geophysics 50:2794–2796

    Google Scholar 

  • Scales JA, Snieder R (1997) To Bayes or not to Bayes. Geophysics 62(4):1045–1046

    Google Scholar 

  • Scales JA, Snieder R (2000) The anatomy of inverse problems. Geophysics 65(6):1708–1710

    Google Scholar 

  • Schwarzbach C, Börner RU, Spitzer K (2005) 2D inversion of direct current resistivity data using a parallel, multi-objective genetic algorithm. Geophys J Int 162:685–695

    Article  Google Scholar 

  • Sen MK Bhattacharya BB, Stoffa PL (1993) Nonlinear inversion of resistivity sounding data. Geophysics 58:496–507

    Article  Google Scholar 

  • Stefanesco SS, Schlumberger C, Schlumberger M (1930) Sur la distribution électrique potentielle autour d’ une prise de tèrre ponctuelle dans un terrain à couches horizontales. J Phys Radium 1:132–140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Fernández Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández Alvarez, J.P., Fernández Martínez, J.L. & Menéndez Pérez, C.O. Feasibility Analysis of the Use of Binary Genetic Algorithms as Importance Samplers Application to a 1-D DC Resistivity Inverse Problem. Math Geosci 40, 375–408 (2008). https://doi.org/10.1007/s11004-008-9151-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-008-9151-y

Keywords

Navigation