Skip to main content
Log in

Spectral Simulation and Conditioning to Local Continuity Trends in Geologic Modeling

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Spectral simulation has gained application in building geologic models due to the advantage of better honoring the spatial continuity of petrophysical properties, such as reservoir porosity and shale volume. Distinct from sequential simulation methods, spectral simulation is a global algorithm in the sense that a global density spectrum is calculated once and the inverse Fourier transform is performed on the Fourier coefficient also only once to generate a simulation realization. The generated realizations honor the spatial continuity structure globally over the whole field instead of only within a search neighborhood, as with sequential simulation algorithms. However, the disadvantage of global spectral simulation is that it traditionally cannot account for the local information such as the local continuity trends, which are often observed in reservoirs and hence are important to be accounted for in geologic models. This disadvantage has limited wider application of spectral simulation in building geologic models. In this paper, we present ways of conditioning geologic models to the relevant local information. To account for the local continuity trends, we first scale different frequency components of the original model with local-amplitude spectrum ratios that are specific to the local trend. The sum of these scaled frequency components renders a new model that displays the desired local continuity trend. The implementation details of this new method are discussed and examples are provided to illustrate the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Borgman, L., Taheri, M., and Hagan, R., 1984, Three-dimensional frequency-domain simulations of geological variables, in Verly, G., Journel, A. G., and Marechal, A., eds., Geostatistics for natural resources characterization: NATO ASI Series, Reidel Publication, Dordrecht, The Netherlands, p. 517–541.

    Google Scholar 

  • Bracewell, R., 1986, The Fourier transform and its application: McGraw-Hill, Inc., Singapore, p. 474.

    Google Scholar 

  • Bruguera, J., 1996, Implementation of the FFT butterfly with redundant arithmetic: IEEE Transaction on Circuits and Systems, Part II: Analog Digit. Signal Process., v. 43, no. 10, p. 717–723.

    Article  Google Scholar 

  • Calvert, C. S., Yao, T., Bishop, G. W., and Ma, Y. Z., 2001, Method for locally controlling spatial continuity in geologic models: U.S. Patent Application Pending.

  • Gutjahr, A., Kallay, P., and Wilson, J., 1987, Stochastic models for two-phase flow: A spectral perturbation approach: Trans. Am. Geophys. Union, Eos, v. 68, no. 44, p. 1266–1267.

  • Kar, D., 1994, On the prime factor decomposition algorithm for the discrete sine transform: IEEE Trans. Signal Process., v. 42, p. 3258–3260.

    Article  Google Scholar 

  • Lam, K. -M., 1995, Computing the inverse DFT with the in-place, in-order prime factor FFT algorithm: IEEE Trans. Signal Process., v. 43, p. 2193–2194.

    Article  Google Scholar 

  • Mckay, D., 1988, A fast Fourier transform method for generation of random fields: Unpublished Master's Thesis, New Mexico Institute of Mining and Technology, p. 92.

  • Pardo-Iguzquiza, E., and Chica-Olmo, M., 1993, The Fourier integral method: An efficient spectral method for simulation of random fields: Math. Geol., v. 25, no. 4, p. 177–217.

    Article  Google Scholar 

  • Xu, W., 1996, Conditional curvilinear stochastic simulation using pixel-based algorithms: Math. Geol., v. 28, no. 7, p. 937–949.

    Article  Google Scholar 

  • Yao, T., 1998a, Conditional spectral simulation with phase identification: Math. Geol., v. 30, no. 3, p. 285–308.

    Article  Google Scholar 

  • Yao, T., 1998b, SPECSIM: A fortran-77 program for conditional spectral simulation in 3D: Comp. Geosci., v. 24, no. 10, p. 911–921.

    Article  Google Scholar 

  • Yao, T., 1998c, Automatic modeling of (cross) covariance tables using fast Fourier transform: Math. Geol., v. 30, no. 6, p. 589–615.

    Article  Google Scholar 

  • Yao, T., 2004, Reproduction of mean, variance, and variogram model in spectral simulation: Math. Geol., v. 36, no. 4, p. 487–506.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, T., Calvert, C., Jones, T. et al. Spectral Simulation and Conditioning to Local Continuity Trends in Geologic Modeling. Math Geol 38, 51–62 (2006). https://doi.org/10.1007/s11004-005-9003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-005-9003-y

Key Words

Navigation