Skip to main content
Log in

Symmetropy of Fault Patterns: Quantitative Measurement of Anisotropy and Entropic Heterogeneity

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

The purpose of the effort in this paper is to show symmetropy of fault patterns. This quantity can be considered as a measure of entropic heterogeneity and anisotropy. We describe this measure based on the discrete Walsh transform. The specific results of its applications are obtained as follows. When a rock specimen undergoes creep in a laboratory experiment, the fault propagation can be monitored by the decrease of symmetropy. Moreover, in a fault model with self-organized criticality, fault patterns of critical states and subcritical states are distinguished by the behavior of the symmetropy: subcritical fault patterns show almost constant value of symmetropy but it takes various values during critical states. These results demonstrate that symmetropy idea can be used for the quantification of fault patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akopyan, S. T., 1996, Entropy of seismic systems and a new seismic law: Trans. (Doklady) USSR Acad. Sci., Earth Sci. Sect., v. 344, no. 4, p. 1–7 (Trans. 1995, Doklady Rossiyskoy Akad. Nauk SSSR, v. 340, no. 4, p. 531–535).

    Google Scholar 

  • Bak, P., and Tang, C., 1989, Earthquakes as a self-organized critical phenomenon: J. Geophys. Res., v. 94, no. B11, p. 15635–15637.

    Google Scholar 

  • Chiba, T., and Nagahama, H., 2001, Curie symmetry principle in nonlinear functional systems: Forma, v. 16, no. 3, p. 225–231.

    Google Scholar 

  • Curie, P., 1894, Sur la symérie dans les phénomènes physiques, symérie d’un champ électrique et d’un champ magnetique: J. Phys. (Paris), v. 3, p. 393–415.

    Google Scholar 

  • Enya, O., 1901, Note on after-shocks of earthquakes: Rep. Imperial Earthquake Invest. Com., v. 35, p. 35–56 (in Japanese).

    Google Scholar 

  • Gubbins, D., Scollar, I., and Wisskirchen, P., 1971, Two dimensional digital filtering with HAAR and WALSH transforms: Ann. Géophys., v. 27, no. 2, p. 85–104.

    Google Scholar 

  • Hagiwara, Y., Itota, C., and Shichi, R., 1998, A Walsh gravity analysis of the seismogenetic faulting structure: J. Geodetic Soc. Jpn., v. 44, no. 1, p. 33–36 (in Japanese with English abstract).

    Google Scholar 

  • Hatori, T., 1963, Directivity of tsunami: Bull. Earthquake Res. Inst., Univ. Tokyo, v. 41, p. 61–81.

    Google Scholar 

  • Hirata, T., Satoh, T., and Ito, K., 1987, Fractal structure of spatial distribution of microfracturing in rock: Geophys. J. R. Astron. Soc., v. 90, p. 369–374.

    Google Scholar 

  • Hrouda, F., 1973, A determination of the symmetry of the ferromagnetic mineral fabric in rock on the basis of the magnetic susceptibility anisotropy measurements: Gerlands Beitrage zur Geophys., v. 81, p. 390–396.

    Google Scholar 

  • Ito, K., and Matsuzaki, M., 1990, Earthquakes as self-organized critical phenomena: J. Geophys. Res., v. 65, no. B5, p. 6853–6860.

    Google Scholar 

  • Jaeger, F. M., 1920, Lectures on the principle of symmetry and its applications in all natural sciences, 2nd edn.: Elsevier, Amsterdam, 348 p.

    Google Scholar 

  • Kagan, Y. Y., 2002, Aftershock zone scaling: Bull. Seismol. Soc. Am., v. 92, no. 2, p. 641–655.

    Article  Google Scholar 

  • Lanning, E. N., and Johnson, D. M., 1983, Automated identification of rock boundaries: An application of the Walsh transformation to geophysical well-log analysis: Geophysics, v. 48, p. 197–205.

    Google Scholar 

  • Li, Q., and Nyland, E., 1991, A new approach to modeling of the dynamics of the lithosphere: J. Geophys. Res., v. 96, no. B12, p. 20301–20307.

    Google Scholar 

  • Lister, G. S., and Williams, P. F., 1979, Fabric development in shear zones: Theoretical controls and observed phenomena: J. Struct. Geol., v. 1, no. 4, p. 283–297.

    Google Scholar 

  • Majewski, E., 2001, Thermodynamics of fault slip, in Teisseyre, R., and Majewski, E., eds., Earthquake thermodynamics and phase transformations in the Earth’s interior: Academic, San Diego, CA, p. 323–327.

    Google Scholar 

  • Nagahama, H., 1994a, High-temperature viscoelastic behaviour and long time tail of rocks, in Kruhl, J. H., ed., Fractals and dynamical systems in geosciences: Springer-Verlag, Berlin, p. 121–129.

    Google Scholar 

  • Nagahama, H., 1994b, Self-affine growth pattern of earthquake rupture zones: Pure Appl. Geophys., v. 142, no. 2, p. 263–271.

    Article  Google Scholar 

  • Nakamura, N., and Nagahama, H., 2000, Curie symmetry principle: Does it constrain the analysis of structural geology?: Forma, v. 15, no. 1, p. 87–94.

    Google Scholar 

  • Nanjo, K., and Nagahama, H., 2000, Spatial distribution of aftershocks and the fractal structure of active fault systems: Pure Appl. Geophys., v. 157, no. 4, p. 575–588.

    Google Scholar 

  • Nanjo, K., and Nagahama, H., 2004, Fractal properties of spatial distributions of aftershocks and active faults: Chaos Solitons Fractals, v. 19, no. 2, p. 387–397.

    Google Scholar 

  • Nanjo, K., Nagahama, H., and Satomura, M., 1998, Rates of aftershock decay and the fractal structure of active fault systems: Tectonophysics, v. 287, no. 1–4, p. 173–186.

    Google Scholar 

  • Nanjo, K., Nagahama, H., and Yodogawa, E., 2000, Symmetry properties of spatial distribution of microfracturing in rock: Forma, v. 15, no. 1, p. 95–101.

    Google Scholar 

  • Nanjo, K., Nagahama, H., and Yodogawa, E., 2001, Symmetropy and self-organized criticality: Forma, v. 16, no. 3, p. 213–224.

    Google Scholar 

  • Nanjo, K., Nagahama, H., and Yodogawa, E., 2004, Symmetry in the self-organized criticality: in Nagy, D., and Lugosi, G., eds., Symmetry: Art and science 2004: ISIS-Symmetry, Budapest, p. 302–305.

    Google Scholar 

  • Omori, F., 1894, On the after-shocks of earthquakes: J. Coll. Sci., Imperial Univ., Jpn., v. 7, p. 111–200 (in Japanese).

    Google Scholar 

  • Paterson, M. S., and Weiss, L. E., 1961, Symmetry concepts in the structural analysis of deformed rocks: Geol. Soc. Am. Bull., v. 72, p. 841–882.

    Google Scholar 

  • Saito, R., and Maruyama, K., 1987, An universal distribution function of relaxation in amorphous materials: Solid State Commun., v. 63, no. 7, p. 625–627.

    CAS  Google Scholar 

  • Sander, B., 1930, Gefüekunde der Gesteine: Springer-Verlag, Vienna, 352 p.

    Google Scholar 

  • Shaw, R. K., and Agarwal, B. N., 1990, Application of Walsh transforms to interpret gravity anomalies due to some simple geometrically shaped causative sources: A feasibility study: Geophysics, v. 55, no. 7, p. 843–850.

    Google Scholar 

  • Stewart, I., 1990, Changes: On the shoulders of giants, in Steen, L. A., ed., New approaches to numeracy: National Academy, Washington, DC, p. 183–217.

    Google Scholar 

  • Stewart, I., and Golubitsky, M., 1992, Fearful symmetry: Is God a geometer?: Blackwell, Oxford, 287 p.

    Google Scholar 

  • Tang, C., and Bak, P., 1988, Mean field theory of self-organized critical phenomena: J. Stat. Phys., v. 51, p. 797–802.

    Google Scholar 

  • Turner, F. J., and Weiss, L. E., 1963, Structural analysis of metamorphic tectonites: McGraw-Hill, New York, 545 p.

    Google Scholar 

  • Twiss, L. E., and Wenk, H.-R., 1985, Symmetry of pole figures and textures, in Wenk, H.-R., ed., Preferred orientation in deformed metals and rocks: An introduction to modern texture analysis: Academic, London, p. 49–72.

    Google Scholar 

  • Twiss, R. J., and Unruh, J. R., 1998, Analysis of fault slip inversions: Do they constrain stress or strain rate?: J. Geophys. Res., v. 103, no. B6, p. 12205–12222.

    Google Scholar 

  • Utsu, T., 1970, Aftershocks and earthquake statistics (2): Further investigation of aftershocks and other earthquake sequences based on a new classification of earthquake sequences: J. Fac. Sci., Hokkaido Univ. Ser. 7, Geophys., v. 3, p. 197–266.

    Google Scholar 

  • Walsh, J. L., 1999, A closed set of normal orthogonal functions, in Rivlin, T. J., and Saff, E. B., eds., Joseph L. Walsh selected papers: Springer-Verlag, New York, p. 109–128 (Reprinted from 1923, Am. J. Math., v. 45, p. 5–24).

  • Yodogawa, E., 1982, Symmetropy, an entropy-like measure of visual symmetry: Percept. Psychophys., v. 32, no. 3, p. 230–240.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Z. Nanjo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nanjo, K.Z., Nagahama, H. & Yodogawa, E. Symmetropy of Fault Patterns: Quantitative Measurement of Anisotropy and Entropic Heterogeneity. Math Geol 37, 277–293 (2005). https://doi.org/10.1007/s11004-005-1559-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11004-005-1559-z

Keywords

Navigation