Skip to main content
Log in

Methods for the Evaluation of the Contact Durability of Elements of the Tribojoints (A Survey)

  • Published:
Materials Science Aims and scope

We present a survey of the literature devoted to the models and methods aimed at the evaluation of the contact durability of elements of the tribojoints (in rolling and fretting couples) and analyze the results of investigations in the scientific directions regarded as basic for the proposed methods and including, in particular, the mechanics of fatigue fracture of cyclically contacting bodies and the contact problems of the mathematical theory of cracks. We consider the problems connected with the application of new approaches and the results of investigations of rolling contact fatigue and fretting fatigue to the prediction of the contact durability of elements of the tribojoints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Tóth and S. Ya. Yarema, “Formation of the science of fatigue of metals. Part 1. 1825–1870,” Fiz.-Khim. Mekh. Mater., 42, No. 5, 87–94 (2006); English translation: Mater. Sci., 42, No. 5, 673–680 (2006).

  2. V. V. Panasyuk, Mechanics of Quasibrittle Fracture of Materials [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  3. G. S. Pisarenko and A. A. Lebedev, Deformation and Strength of Materials in the Complex Stressed State [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  4. V. V. Panasyuk, A. E. Andreikiv, and V. Z. Parton, “Fundamentals of the fracture mechanics of materials,” in: V. V. Panasyuk (editor), Fracture Mechanics and Strength of Materials: a Handbook [in Russian], Vol. 1, Naukova Dumka, Kiev (1988).

    Google Scholar 

  5. O. N. Romaniv, S. Ya. Yarema, G. N. Nikiforchin, N. A. Makhutov, and M. M. Stadnik, “Fatigue and cyclic crack-growth resistance of structural materials,” in: V. V. Panasyuk (editor), Fracture Mechanics and Strength of Materials: A Handbook [in Russian], Vol. 4, Naukova Dumka, Kiev (1990).

    Google Scholar 

  6. A. Carpinteri (editor), Handbook of Fracture Crack Propagation in Metallic Structures, Elsevier, Amsterdam (1994).

    Google Scholar 

  7. J. H. Beynon, M. W. Brown, T. C. Lindley, R. A. Smith, and B. Tomkins (editors), Engineering Against Fatigue, Balkema Publishers, Rotterdam (1999).

    Google Scholar 

  8. RD 50-345-82. Methodical Recommendations. Strength Analysis and Tests. Methods for Mechanical Testing of Metals. Determination of the Characteristics of Crack-Growth Resistance (Fracture Toughness) under Cyclic Loading [in Russian], Izd. Standartov, Moscow (1983).

  9. ASTM Standard E647-00: Standard Test Method for Measurement of Fatigue Crack Growth Rates, in: Annual Book of ASTM Standards, Vol. 03.01, American Society for Testing and Materials, West Conshohocken (2000).

  10. Ya. Ivanyts’kyi and S. Shtayura, “Methodical recommendations. Determination of the characteristics of crack resistance of materials under the conditions of complex stressed state (normal tension + transverse shear and normal tension + longitudinal shear),” in: V. V. Panasyuk (editor), Fracture Mechanics of Materials and Strength of Structures [in Russian], Karpenko Physicomechanical Institute, Ukrainian National Academy of Sciences, Lviv (2004), pp. 723–732.

  11. O. P. Ostash, “Structure of materials and fatigue life of structural elements,” in: V. V. Panasyuk (editor), Fracture Mechanics and Strength of Materials: A Handbook [in Ukrainian], Vol. 15, Spolom, Lviv (2015).

    Google Scholar 

  12. P. E. Bold, M. W. Brown, and R. J. Allen, “Shear mode crack growth and rolling contact fatigue,” Wear, 144, 307–317 (1991).

    Article  Google Scholar 

  13. T. M. Lenkovs’kyi, “Determination of the characteristics of cyclic crack resistance of steels under transverse shear (A survey),” Fiz.-Khim. Mekh. Mater., 50, No. 3, 29–37 (2014); English translation: Mater. Sci., 50, No. 3, 340–349 (2014).

  14. P. C. Paris, M. P. Gomes, and W. E. Anderson, “A rational analytic theory of fatigue,” Trend Eng., 13, 54–61 (1961).

    Google Scholar 

  15. M. P. Savruk, Stress Intensity Factors in Bodies with Cracks, in: V. V. Panasyuk (editor), Fracture Mechanics and Strength of Materials: A Handbook [in Russian], Vol. 2, Naukova Dumka, Kiev (1988).

    Google Scholar 

  16. M. H. Aliabadi, Database of Stress Intensity Factors, Computational Mechanics Publications, Southampton (1996).

    Google Scholar 

  17. Y. Murakami, Stress Intensity Factors Handbook, Pergamon Press, Oxford (1986).

    Google Scholar 

  18. D. P. Rooke and D. J. Cartwright, The Compendium of Stress Intensity Factors, H. M. S. O., London (1976).

    Google Scholar 

  19. G. C. Sih, Handbook of Stress Intensity Factors, Vol. 1, Vol. 2, Lehigh University Press, Bethlehem (1973).

  20. H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks Handbook, Del Research Corp., Hellertown (1973).

    Google Scholar 

  21. V. V. Panasyuk, M. P. Savruk, and A. P. Datsyshyn, Stress Distribution Near Cracks in Plates and Shells [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  22. V. V. Panasyuk, M. P. Savruk, and O. P. Datsyshyn, “A general method of solution of two-dimensional problems in the theory of cracks,” Eng. Fract. Mech., 9, No. 2, 481–497 (1977).

    Article  Google Scholar 

  23. M. P. Savruk, Two-Dimensional Problems of Elasticity for Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  24. K. L. Johnson, Contact Mechanics, Cambridge Univ. Press, Cambridge (1985).

    Book  Google Scholar 

  25. G. S. Kit and M. G. Krivtsun, Plane Problems of Thermoelasticity for Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  26. R. Lunden, “Elastoplastic modeling of subsurface crack growth in rail/wheel contact problems,” Fatigue Fract. Eng. Mater. Struct., 30, 905–914 (2007).

    Article  Google Scholar 

  27. A. Ekberg, B Åkesson, and E. Kabo, “Wheel/rail rolling contact fatigue—probe, predict, prevent,” Wear, 314, No. 1-2, 2–12 (2014).

    Article  Google Scholar 

  28. S. D. Sheppard, J. R. Barber, and M. Comninou, “Subsurface cracks under conditions of slip, stick, and separation caused by a moving compressive load,” Trans. ASME, J. Appl. Mech., 54, No. 2, 393−398 (1987).

  29. K. Komvopoulos and S.-S. Cho, “Finite element analysis of subsurface crack propagation in a half-space due to a moving asperity contact,” Wear, 209, 57–68 (1997).

    Article  Google Scholar 

  30. D. P. Rooke and D. A. Jones, “Stress intensity factors in fretting fatigue,” J. Strain Anal., 14, No. 1, 1–6 (1979).

    Article  Google Scholar 

  31. O. P. Datsyshyn and H. P. Marchenko, “Stressed state of a half plane with shallow edge crack under Hertzian loading (a survey),” Fiz.-Khim. Mekh. Mater., 44, No. 1, 23–34 (2008); English translation: Mater. Sci., 44, No. 1, 22–34 (2008).

  32. D. I. Fletcher, F. J. Franklin, and A. Kapoor, “Rail surface fatigue and wear,” in” R. Lewis and U. Olofsson (editors), Wheel-Rail Interface Handbook, Woodhead Publ., Cambridge (2009), pp. 280–310.

  33. D. I. Fletcher, L. Smith, and A. Kapoor, “Rail rolling contact fatigue dependence on friction, predicted using fracture mechanics with a three-dimensional boundary element model,” Eng. Fract. Mech., 76, 2612–2625 (2009).

    Article  Google Scholar 

  34. L. M. Keer and M. D. Bryant, “A pitting model for rolling contact fatigue,” Trans. ASME, J. Lubric. Technol., 105, No. 2, 198–205 (1983).

  35. S. Bogdanski and M. Trajer, “A dimensionless multi-size finite element model of a rolling contact fatigue crack,” Wear, 258, 1265–1272 (2005).

    Article  Google Scholar 

  36. J. W. Ringsberg, and A. Bergkvist, “On propagation of short rolling contact fatigue cracks,” Fatigue Fract. Eng. Mater. Struct., 26, No. 10, 969–983 (2003).

    Article  Google Scholar 

  37. M. Akama and T. Mori, “Boundary element analysis of surface initiated rolling contact fatigue cracks in wheel/rail contact systems,” Wear, 253, 35–41 (2002).

    Article  Google Scholar 

  38. M. Beghini, L. Bertiny, and V. Fontanari, “Parametric study of oblique edge cracks under cyclic contact loading,” Fatigue Fract. Eng. Mater. Struct. 28, No. 1-2, 31–40 (2005).

    Google Scholar 

  39. D. I. Fletcher and J. H. Beynon, “A simple method of stress intensity factors calculation for inclined surface-breaking crack with crack face friction under contact loading,” Proc. Inst. Mech. Eng. J, J. Eng. Tribol., 213, 481–486 (1999).

  40. O. P. Datsyshyn, V. V. Panasyuk, and A. Yu. Glazov, “Modelling of fatigue contact damages formation in rolling bodies and assessment of their durability,” Wear, 271, No. 1-2, 186–194 (2011).

  41. O. P. Datsyshyn, H. P. Marchenko, A. Yu. Hlazov, and A. B. Levus, “Influence of compressive stresses on the propagation of surface shear cracks in railroad rails,” Fiz.-Khim. Mekh. Mater., 51, No. 2, 83–90 (2015); English translation: Mater. Sci., 51, No. 2, 235–243 (2015).

  42. A. F. Bower, “The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks,” Trans. ASME, J. Tribol., 110, No. 4, 704–711 (1988).

  43. M. Kaneta and Y. Murakami, “Propagation of semi-elliptical surface crack in lubricated rolling/sliding elliptical contact,” Trans. ASME, J. Tribol., 113, 270–275 (1991).

  44. Y. Murakami, M. Kaneta, and H. Yatsuzuka, “Analysis of surface crack propagation in lubricated rolling contact,” ASLE Trans., 28, No. 1, 60–68 (1985).

    Article  Google Scholar 

  45. Yu. V. Kolesnikov and E. M. Morozov, Mechanics of Contact Fracture [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  46. S. V. Pinegin, Contact Strength and Rolling Resistance [in Russian], Mashinostroenie, Moscow (1969).

    Google Scholar 

  47. S. Way, “Pitting due to rolling contact,” Trans. ASME, J. Appl. Mech., 2, A49–A58 (1935).

  48. G. Lundberg and A. Palmgren, “Dynamic capacity of rolling bearing,” Acta Polytech., Ser. Mech. Eng., 1, No. 3, 7–24 (1947).

  49. B. I. Kostetskii, Wear Resistance of Machine Parts [in Russian], Mashgiz, Moscow (1959).

    Google Scholar 

  50. R. B. Waterhouse, Fretting Corrosion, Pergamon Press, Oxford (1975).

    Google Scholar 

  51. L. A. Sosnovskii, N. A. Makhutov, and V. A. Shurinov, “Fretting fatigue: basic regularities,” Zavod. Lab., 58, No. 8, 45–62 (1992).

    Google Scholar 

  52. L. A. Sosnovskii, N. A. Makhutov, and V. A. Shurinov, “Friction-mechanical fatigue: basic regularities,” Zavod. Lab., 58, No. 9, 46–63 (1992).

    Google Scholar 

  53. L. A. Sosnovskii, N. A. Makhutov, and V. A. Shurinov, “Contact-mechanical fatigue: main regularities,” Zavod. Lab., 58, No. 11, 44–61 (1992).

    Google Scholar 

  54. D. F. Cannon, K. O. Edel, S. L. Grassie, and K. Sawley, “Rail defects: an overview,” Fatigue Fract. Eng. Mater. Struct., 26, No. 10, 865–886 (2003).

    Article  Google Scholar 

  55. A. Ekberg and E. Kabo, “Fatigue of railway wheels and rails under rolling contact and thermal loading—an overview,” Wear, 258, 1288–1300 (2005).

    Article  Google Scholar 

  56. R. A. Smith, “The wheel-rail interface—some recent accidents,” Fatigue Fract. Eng. Mater. Struct., 26, No. 10, 901–907 (2003).

    Article  Google Scholar 

  57. U. Zerbst, K. Madler, and H. Hintze, “Fracture mechanics in railway applications—an overview,” Eng. Fract. Mech., 72, No. 2, 163–194 (2005).

    Article  Google Scholar 

  58. V. A. Zazulyak, A. I. Darchuk, A. M. Legun, Ya. L. Ivanitskii, and V. V. Zubatyi, “Evaluation of the crack resistance of large rolling mill back-up rolls in cyclic loading,” Fiz.-Khim. Mekh. Mater., 21, No. 4, 93–95 (1985); English translation: Sov. Mater. Sci., 21, No. 4, 383–385 (1985).

  59. M. F. Frolish, D. I. Fletcher, and J. H. Beynon, “A quantitative model for predicting the morphology of surface initiated rolling contact fatigue cracks in back-up roll steels,” Fatigue Fract. Eng. Mater. Struct., 25, 1073–1086 (2002).

    Article  Google Scholar 

  60. B. M. Kapadia and K. W. Marsden, “Spalling behavior of back-up roll materials,” in: Proc. of the 39th Conf. on Mechanical Working and Steel Processing, Iron and Steel Society, Warrendale (1997), pp. 1–38.

  61. I. I. Kudish, Numerical Analysis of Wear and Fatigue Crumbling in Rolling Bearings: A Survey [in Russian], Series X, Bearing Industry, Central Research Institute of Information and Engineering and Economic Investigations in the Automotive Industry, Moscow (1989).

  62. V. Bhargava, G. T. Hahn, and C. A. Rubin, “Analysis of cyclic crack growth in high-strength roller bearings,” Theor. Appl. Fract. Mech., 5, No. 1, 31–38 (1986).

    Article  Google Scholar 

  63. A. C. Batista, A. M. Dias, J. L. Lebrun, J. C. Le Flour, and G. Inglebert, “Contact fatigue of automotive gears: evolution and effects of residual stresses introduced by surface treatments,” Fatigue Fract. Eng. Mater. Struct., 23, 217–228 (2000).

    Article  Google Scholar 

  64. S. Glodež, R. Potočnik, J. Flašker, and B. Zafošnik, “Numerical modelling of crack path in the lubricated rolling–sliding contact problems,” Eng. Fract. Mech., 75, 880–891 (2008).

    Article  Google Scholar 

  65. G. Donzella, M. Faccoli, A. Ghidini, A. Mazzu, and R. Roberti, “The competitive role of wear and RCF in rail steel,” Eng. Fract. Mech., 72, 287–308 (2005).

    Article  Google Scholar 

  66. Polish Standard. Metals: Contact Fatigue Testing. PN–80 H–04324 (1980).

  67. V. T. Troshchenko, G. V. Tsybanev, and A. O. Khotsyanovskii, “Determination of the durability of steels under the conditions of fretting fatigue,” Probl. Prochn., No. 6, 3–8 (1988).

  68. D. A. Hills and D. Nowell, Mechanics of Fretting Fatigue, Kluwer, Dordrecht (1994).

    Book  Google Scholar 

  69. M. Kaneta, H. Yatsuzuka, and Y. Murakami, “Mechanism of crack growth in lubricated rolling/sliding contact,” ASLE Trans., 28, No. 3, 407–414 (1985).

    Article  Google Scholar 

  70. T. Goshima, “Thermomechanical effects on crack propagation in rolling contact fatigue failure,” J. Therm. Stresses, 26, 615–639 (2003).

    Article  Google Scholar 

  71. I. I. Kudish and K. W. Burris “Modern state of experimentation and modeling in contact fatigue phenomenon: Part. I: Contact fatigue. Normal and tangential contact and residual stresses. Nonmetallic inclusions and lubricant contamination. Crack initiation and crack propagation. Surface and subsurface cracks,” Tribology Trans., 43, No. 2, 187–196 (2000).

    Article  Google Scholar 

  72. J. W. Ringsberg, “Shear mode growth of short surface-breaking RCF cracks,” Wear, 258, 955–963 (2005).

    Article  Google Scholar 

  73. A. Ekberg, “Fatigue of railway wheels,” in R. Lewis and U. Olofsson (editors), Wheel-Rail Interface Handbook, Woodhead Publishing, Cambridge (2009), pp. 211–244.

    Chapter  Google Scholar 

  74. R. Lunden and B. Paulsson, “Introduction to wheel-rail interface research,” in: R. Lewis and U. Olofsson (editors), Wheel-Rail Interface Handbook, Woodhead Publ., Cambridge (2009), pp. 3–33.

    Chapter  Google Scholar 

  75. U. Zerbst, R. Lundén, K.-O. Edel, and R. A. Smith, “Introduction to the damage tolerance behavior of railway rails—a review,” Eng. Fract. Mech., 76, 2563–2601 (2009).

    Article  Google Scholar 

  76. R. Stock, L. Stanlake, C. Hardwick, M. Yu, D. Eadie, and R. Lewis, “Material concepts for top of rail friction management—classification, characterization, and application,” Wear (2016), DOI: http://dx.doi.org/10.1016/j.wear.2016.05.028.

  77. J. Bellecave, S. Pommier, Y. Nadot, J. Meriaux, and J. A. Araújo, “T-stress based short crack growth model for fretting fatigue,” Tribol. Int., 76, 23–34 (2014).

    Article  Google Scholar 

  78. T. Hattori, V. T. Kien, and M. Yamashita, “Fretting fatigue life estimations based on fretting mechanisms,” Tribol. Int., 44, 1389–1393 (2011).

    Article  Google Scholar 

  79. R. Hojjati-Talemi, M. A. Wahab, J. D. Pauw, and P. D. Baets, “Prediction of fretting fatigue crack initiation and propagation lifetime for cylindrical contact configuration,” Tribol. Int., 76, 73–91 (2014).

    Article  Google Scholar 

  80. J. F. Peng, M. H. Zhu, Z. B. Cai, J. H. Liu, K. C. Zuo, C. Song, and W. J. Wang, “On the damage mechanisms of bending fretting fatigue,” Tribol. Int., 76, 133–141 (2014).

    Article  Google Scholar 

  81. R. W. Neu, “Progress in standardization on fretting fatigue terminology and testing,” Tribol. Int., 44, 1371–1377 (2011).

    Article  Google Scholar 

  82. M. Kaneta and Y. Murakami, “Effects of oil hydraulic pressure on surface crack growth in rolling/sliding contact,” Tribol. Int., 20, No. 4, 210–217 (1987).

    Article  Google Scholar 

  83. L. Nayak and K. Paul, “Contact fatigue failure of rolls of hot strip mill,” Indian J. Technol., 17, 27–34 (1979).

    Google Scholar 

  84. W. H. Tait, “Roll shop: Part 1. The nature and causes of in-service defects,” in: R. B. Corbett (editor), Rolls for the Metalworking Industries, Iron and Steel Society, Warrendale (1990), pp. 135–149.

    Google Scholar 

  85. Y. Ohkomori, I. Kitagawa, K. Shinozuka, R. Miyamoto, S. Yazaki, and M. Inoue, “Cause and prevention of spalling of back-up rolls for hot strip mill,” Tetsu-to Hagane, 73, 691–697 (1987).

    Article  Google Scholar 

  86. Y. Ohkomori, C. Sakae, and Y. Murakami, “Mode II crack growth analysis of spalling behavior for strip mill back-up roll,” in: Proc. of the 42nd MSWP Conf. of the ISS, Vol. XXXVIII (2000), pp. 723–729.

  87. J. Flašker, G. Fajdiga, S. Glodež, and T. K. Hellen, “Numerical simulation of surface pitting due to contact loading,” Int. J. Fatigue, 23, 599–605 (2001).

    Article  Google Scholar 

  88. G. Fajdiga, J. Flašker, S. Glodež, and T. K.Hellen, “Numerical modelling of micropitting of gear teeth flanks,” Fatigue Fract. Eng. Mater. Struct., 26, No. 12, 1135–1143 (2003).

    Article  Google Scholar 

  89. B. Zafošnik, Z. Ren, J. Flašker, and G. Mishuris, “Modelling of surface crack growth under lubricated rolling–sliding contact loading,” Int. J. Fract., 134, 127–149 (2005).

    Article  Google Scholar 

  90. O. P. Datsyshyn, “Service life and fracture of solid bodies under the conditions of cyclic contact interaction,” Fiz.-Khim. Mekh. Mater., 41, No. 6, 5–25 (2005); English translation: Mater. Sci., 41, No. 6, 709–733 (2005).

  91. O. P. Datsishin, G. P. Marchenko, and V. V. Panasyuk, “Theory of crack growth in rolling contact,” Fiz.-Khim. Mekh. Mater., 29, No. 4, 49–61 (1993); English translation: Mater. Sci., 29, No. 4, 373–383 (1993).

  92. O. P. Datsyshyn, V. V. Panasyuk, and A. Yu. Glazov, “The model of the residual life time estimation of tribojoint elements by formation criteria of the typical contact fatigue damages” Int. J. Fatigue, 83, Part 2, 300–312 (2016).

  93. V. V. Panasyuk, O. P. Datsyshyn, and R. B. Shchur, “Residual durability of solids contacting under conditions of fretting fatigue,” Fiz.-Khim. Mekh. Mater., 36, No. 2, 5–19 (2000); English translation: Mater. Sci., 36, No. 2, 153–169 (2000).

  94. O. P. Datsyshyn and V. M. Kadyra, “A fracture mechanics approach to prediction of pitting under fretting fatigue conditions,” Int. J. Fatigue, 28, No. 4, 375–385 (2006).

    Article  Google Scholar 

  95. O. P. Datsyshyn and A. B. Levus, “Propagation of an edge crack under the pressure of liquid in the vicinity of the crack tip,” Fiz.-Khim. Mekh. Mater., 39, No. 5, 120−122 (2003); English translation: Mater. Sci., 39, No. 5, 754–757 (2003).

  96. O. P. Datsyshyn and V. V. Panasyuk, “Pitting of the rolling bodies contact surface,” Wear, 251, 1347–1355 (2001).

    Article  Google Scholar 

  97. O. P. Datsyshyn and M. M. Kopylets,’ “Prediction of the service life of rolling bodies according to the development of a subsurface crack,” Fiz.-Khim. Mekh. Mater., 39, No. 6, 13–24 (2003); English translation: Mater. Sci., 39, No. 6, 765–779 (2003).

  98. V. V. Panasyuk, O. P. Datsyshyn, and H. P. Marchenko, “Crack growth in rolling bodies under the conditions of dry friction and wetting,” Fiz.-Khim. Mekh. Mater., 37, No. 1, 7–16 (2001); English translation: Mater. Sci., 37, No. 1, 1–11 (2001).

  99. V. V. Panasyuk, O. P. Datsyshyn, and A. B. Levus, “Evolution of a system of edge cracks in the region of rolling bodies cyclic contact,” in: A. Neimitz, I. V. Rokach, D. Kocanda, and K. Golos (editors), Proc. of the 14th Biennial Conf. “Fracture Mechanics beyond 2000” (ECF14) (Kraków, 2002), Vol. 2-3, EMAS, Sheffield (2002), pp. 609–616.

  100. O. P. Datsyshyn and A. B. Levus, “Stress intensity factors for a system of edge parallel cracks in a half plane under the action of Hertzian forces on its boundary,” Mashynoznavstvo, No. 11, 9–15 (2000).

    Google Scholar 

  101. I. V. Kragel’skii, M. N. Dobychin, and V. S. Kombalov, Foundations of the Numerical Analysis of Friction and Wear [in Russian], Mashinostroenie, Moscow (1977).

    Google Scholar 

  102. E. M. Morozov and M. B. Zernin, Contact Problems of Fracture Mechanics [in Russian], Mashinostroenie, Moscow (1999).

    Google Scholar 

  103. M. Khebda and A. V. Chichinadze, A Handbook of Triboengineering [in Russian], Mashinostroenie, Moscow (1989).

    Google Scholar 

  104. К. Holmberg, “Tribology in reliability engineering,” in: F. Franek, W. J. Bartz, and A. Pauschitz (editors), Tribology 2001 – Scientific Achievements, Industrial Applications, Future Challenges, Proc. of the 2nd World Tribology Congress (WTC–2001) (Vienna, Austria, September 3–7, 2001), Austrian Tribology Society, Vienna (2001), pp. 13–19.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Datsyshyn.

Additional information

Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 52, No. 4, pp. 7–20, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datsyshyn, O.P., Panasyuk, V.V. Methods for the Evaluation of the Contact Durability of Elements of the Tribojoints (A Survey). Mater Sci 52, 447–459 (2017). https://doi.org/10.1007/s11003-017-9977-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-017-9977-x

Keywords

Navigation