Skip to main content
Log in

Physical, chemical, and mechanical properties of nanostructured materials

  • Published:
Materials Science Aims and scope

Abstract

Nanocrystalline materials have special physical, chemical, and mechanical properties. To a significant extent, these properties are attributed to a high density of grain boundaries and other defects in nanocrystalline compounds. We study the microstructure and mechanical properties of nanomaterials (Al, Al-alloys, Cu, Ni, Ti, and stainless steel) and nanocomposites (Al2O3/Ni-P) by the methods of transparent and scanning electron microscopy, X-ray diffraction analysis, and microhardness and tensile tests. The experimental methods include the procedures of measuring the electric and corrosion resistances. The materials are prepared by using contemporary methods, namely, by hydrostatic extrusion (nanometals) and by sintering ceramic powders covered with Ni-P nanoparticles under high pressure by using the procedure of nonelectric chemical metallization (Al2O3/Ni-P nanocomposites).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev, R. K. Islamgaliev, and I. V. Aleksandrov, “Bulk nanostructured materials from severe plastic deformation,” Progress Mat. Sci., 45, 103 (2000).

    Article  CAS  Google Scholar 

  2. M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, “The use of severe plastic deformation for microstructural control,” Mat. Sci. Eng., A324, 82 (2002).

    CAS  Google Scholar 

  3. P. B. Prangnell, J. R. Bowen, and P. J. Apps, “Ultra-fine grain structures in aluminium alloys by severe deformation processing,” Mat. Sci. Eng., A375-377, 178 (2004).

    Google Scholar 

  4. R. Z. Valiev, A. V. Sergeyeva, and A. K. Mukherjee, “The effect of annealing on tensile deformation behavior of nanostructured SPD titanium,” Scripta Mater., 49, 669 (2003).

    Article  CAS  Google Scholar 

  5. Z. Horita, T. Fujinami, M. Nemoto, and T. G. Langdon, “Improvement of mechanical properties for Al alloys using equal-channel angular pressing,” J. Mat Proc. Tech., 117, 288 (2001).

    Article  CAS  Google Scholar 

  6. R. Z. Valiev, D. A. Salimonenko, N. K. Tsenev, B. Berbon, and T. G. Langdon, “Observation of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain size,” Scripta Mater., 37, 1945 (1997).

    Article  CAS  Google Scholar 

  7. M. A. Munos-Morris, C. Garcia Oca, and D. G. Morris, “Mechanical behaviour of dilute Al-Mg alloy processed by equal channel angular pressing,” Scripta Mater., 48, 213 (2003).

    Article  Google Scholar 

  8. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, “Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing,” Scripta Mater., 47, 893 (2002).

    Article  CAS  Google Scholar 

  9. C. Y. Barlow, P. Nielsen, and N. Hansen, “Multilayer roll bonded aluminium foil: processing, microstructure, and flow stress,” Acta Mater., 52, 3967 (2004).

    Article  CAS  Google Scholar 

  10. K. Neishi, Z. Horita, and T. G. Langdon, “Achieving superplasticity in Cu-40% Zn alloy through severe plastic deformation,” Scripta Mater., 45, 965 (2001).

    Article  CAS  Google Scholar 

  11. V. M. Segal, “Materials processing by simple shear,” Mater. Sci. Eng., A197, 157 (1995).

    CAS  Google Scholar 

  12. Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon, “The process of grain refinement in equal-channel angular pressing,” Acta Mater., 46, 3317 (1998).

    Article  CAS  Google Scholar 

  13. A. P. Zhilayaev, B.-K. Kim, G. V. Nurislamova, et al., “Orientation imaging microscopy of ultrafine-grained nickel,” Scripta Mater., 46, 575 (2002).

    Article  Google Scholar 

  14. M. Richert, Q. Liu, and N. Hansen, “Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion-compression,” Mat. Sci. Eng., A260, 275 (1999).

    CAS  Google Scholar 

  15. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, “Novel ultra-high straining process for bulk materials —development of the accumulative roll-bonding (ARB) process,” Acta Mater., 47, 579 (1999).

    Article  CAS  Google Scholar 

  16. J. Y. Huang, Y. T. Zhu, H. Jiang, and T. C. Lowe, “Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening,” Acta Mater., 49, 1497 (2001).

    Article  CAS  Google Scholar 

  17. A. P. Zhilayaev, G, V. Nurislamova, B.-K. Kim, et al., “Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion,” Acta Mater., 51, 753 (2002)

    Article  CAS  Google Scholar 

  18. N. Tsuji, R. Ueji, Y. Minamino, and Y. Saito, “A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property,” Scripta Mater., 46, 305 (.2002).

    Article  CAS  Google Scholar 

  19. Y. Iwahashi, J. Wang, Z. Horita, et al., “Principle of equal-channel angular pressing of ultra-fine grained materials,” Scripta Mater., 35, 143 (1996).

    Article  CAS  Google Scholar 

  20. T. Hebesberger, H. P. Stuwe, A. Vorhauer, et al., “Structure of Cu deformed by high-pressure torsion,” Acta Mater., 53, 393 (2005).

    Article  CAS  Google Scholar 

  21. M. Lewandowska, H. Garbacz, W. Pachia, et al., “Hydrostatic extrusion and nanostructure formation in an aluminium alloy,” Solid State Phen., 101, 65 (2005).

    Google Scholar 

  22. B. Adamczyk-Cieślak, J. Mizera, M. Lewandowska, and K. J. Kurzydłowski, “ Microstructure evaluation in an Al-Li alloy processed by severe plastic deformation,” Rev. Adv. Mater. Sci., 8, 107 (2004).

    Google Scholar 

  23. K. J. Kurzydłowski, H. Garbacz, and M. Richert, “Effect of severe plastic deformation on the microstructure and mechanical properties of Al and Cu,” Rev. Adv. Mater. Sci., 8, 129 (2004).

    Google Scholar 

  24. S. Gierlotka, B. F. Palosz, A. Swiderska-Sroda, et al., “Synthesis of metal-ceramic nanocomposites by high pressure infiltration,” Solid State Phen., 101-102, 157–164 (2005).

    CAS  Google Scholar 

  25. B. Faber, E. Cadel, A. Menand, et al., “Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe,” Acta Materialia, 48, 789–796 (2000).

    Article  Google Scholar 

  26. J. Bielinski, I. Kulak, A. Bielinska, J. Michalski, “Bezprądowe niklowanie materiał ów litych i proszkowych,” Ochrona Przed Korozją, 46(11A), 233–237 (2003).

    Google Scholar 

  27. J. F. Cannon, “Behavior of the elements at high pressures,” Phys. Chem. Ref. Data, 3, No. 3, 781–824 (1974).

    Article  CAS  Google Scholar 

  28. J. Michalski, K. Konopka, S. Gierlotka, and K. J. Kurzydłowski, “Influence of temperature and pressure on the possibility of obtaining Al2O3/Ni-P nanocomposites through hot pressing process,” Solid State Phen., 101-102, 147–150 (2005).

    Article  CAS  Google Scholar 

  29. T. B. Massalski, H. Okamoto, R. Subramanian, and L. Kacprzyk, Binary Alloy Phase Diagrams, 2nd Ed., Vol. 3, SAM Int., Materials Park, OH (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Fizyko-Khimichna Mekhanika Materialiv, Vol. 42, No. 1, pp. 82–89, January–February, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurzydlowski, K.J. Physical, chemical, and mechanical properties of nanostructured materials. Mater Sci 42, 85–94 (2006). https://doi.org/10.1007/s11003-006-0060-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11003-006-0060-2

Keywords

Navigation