Skip to main content
Log in

A brand choice model for TV advertising management using single-source data

  • Published:
Marketing Letters Aims and scope Submit manuscript

Abstract

A brand choice model for TV advertising management using single-source data is proposed. The model replaces household-specific advertising exposure, which is often used as a covariate in a brand choice model, with gross rating points (GRP), a managerial control variable for advertising. In particular, given daily GRP, a probabilistic model of advertising exposure for heterogeneous customers is integrated into a brand choice model with advertising threshold under a Bayesian framework. Through hierarchical modeling, demographic information on panels provides managerial insights into advertising planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe, M. (1996). Audience accumulation by television daypart allocation based on household-level viewing data. Journal of Advertising, 25(4), 21–35.

    Google Scholar 

  • Abe, M. (1997). A household-level television advertising exposure model. Journal of Marketing Research, 34(3), 394–405.

    Article  Google Scholar 

  • Bemmaor, A. C. (1984). Testing alternative econometric models on the existence of advertising threshold effect. Journal of Marketing Research, 21(3), 298–308.

    Article  Google Scholar 

  • Bowman, D., & Gatignon, H. (1996). Order of entry as a moderator of the effect of the marketing mix on market share. Marketing Science, 15(3), 222–42.

    Article  Google Scholar 

  • Deighton, J., Henderson, C. M., & Neslin, S. A. (1994). The effects of advertising on brand switching and repeat purchasing. Journal of Marketing Research, 31(1), 28–43.

    Article  Google Scholar 

  • Erdem, T., & Keane, M. P. (1996). Decision-making under uncertainty: Capturing dynamic brand choice processes in turbulent consumer goods markets. Marketing Science, 15(1), 1–20.

    Article  Google Scholar 

  • Erdem, T., Keane, M. P., & Sun, B. (2008). A dynamic model of brand choice when price and advertising signal product quality. Marketing Science, 27(6), 1111–1125.

    Article  Google Scholar 

  • Jedidi, K., Mela, C. F., & Gupta, S. (1999). Managing advertising and promotion for long-run profitability. Marketing Science, 18(1), 1–22.

    Article  Google Scholar 

  • Kanetkar, V., Weinberg, C. B., & Weiss, D. L. (1992). Price sensitivity and television advertising exposures: some empirical findings. Marketing Science, 11(4), 359–371.

    Article  Google Scholar 

  • Little, J. D. C. (1979). Aggregate advertising models: the state of the art. Operations Research, 27(4), 629–667.

    Article  Google Scholar 

  • Mela, C. F., Gupta, S., & Lehmann, D. R. (1997). The long-term impact of promotion and advertising on consumer brand choice. Journal of Marketing Research, 34(2), 248–261.

    Article  Google Scholar 

  • Mehta, N., Chen, X., & Narasimham, O. (2008). Informing, transforming, and persuading: Disentagling the multiple effects of advertising on brand choice decisions. Marketing Science, 27(3), 334–355.

    Article  Google Scholar 

  • Pedrick, J. H., & Zufryden, F. S. (1991). Evaluating the impact of advertising media plans: A model of consumer purchase dynamics using single-source data. Marketing Science, 10, 111–130.

    Article  Google Scholar 

  • Sawyer, A. (1981). Repetition, cognitive responses and persuasion. In R. E. Petty, T. M. Ostrom, & T. C. Brock (Eds.), Cognitive responses in persuasion (pp. 237–61). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Simon, J. L., & Arndt, J. (1980). The shape of the advertising response function. Journal of Advertising Research, 20(4), 11–28.

    Google Scholar 

  • Tellis, G. J. (1988). Advertising exposure, loyalty, and brand purchase: A two-stage model of choice. Journal of Marketing Research, 25(2), 134–44.

    Article  Google Scholar 

  • Terui, N., & Dahana, W. D. (2006a). Estimating heterogeneous price thresholds. Marketing Science, 25(4), 384–391.

    Article  Google Scholar 

  • Terui, N., & Dahana, W. D. (2006b). Price customization using price thresholds estimated from scanner panel data. Journal of Interactive Marketing, 20(3), 58–71.

    Article  Google Scholar 

  • Terui, N., & Ban, M. (2008). Modeling heterogeneous effective advertising stock in single-source data. Quantitative Marketing and Economics, 6(4), 415–438.

    Article  Google Scholar 

  • Vakratsas, D., Feinberg, F. M., Bass, F. M., & Kalyanaram, G. (2004). The shape of advertising response functions revisited: A model of dynamic probabilistic thresholds. Marketing Science, 23(1), 109–119.

    Article  Google Scholar 

Download references

Acknowledgement

Ban acknowledges the financial support by the grant-in-aid for Young Scientists Startup (20810027). Terui acknowledges grant-in-aid for Scientific Research (A) 21243030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Ban.

Appendices

Appendix 1: hierarchical structure of brand choice module

We set the hierarchical regression models for the household-specific parameters composing the brand choice module, as follows:

$$ {r_h} = {Z_h}\zeta + {\psi_h},\,{\psi_h}{{\sim }}N\left( {0,\nu } \right), $$
$$ \rho_{{jh}}^{*} = \ln \left( {\frac{{{\rho_{{jh}}}}}{{1 - {\rho_{{jh}}}}}} \right) = {Z_h}{\eta_j} + {\omega_{{hj}}},\,{\omega_{{jh}}}{{\sim }}N\left( {0,{\xi_j}} \right)\left( {0 \leqslant {\rho_{{jh}}} < 1} \right), $$
$$ \beta_h^{{(1)}} = {Z_h}{\gamma^{{(1)}}} + \delta_h^{{(1)}},\,\delta_h^{{(1)}}{{\sim }}N\left( {0,{\Lambda^{{(1)}}}} \right), $$
$$ \left\{ {{\alpha_h},\beta_h^{{(2)}}} \right\} = {Z_h}{\gamma^{{(2)}}} + \delta_h^{{(2)}},\,\delta_h^{{(2)}}{{\sim }}N\left( {0,{\Lambda^{{(2)}}}} \right) $$

where we assume that their error terms, \( {\psi_h},{\omega_{{jh}}},\,\delta_h^{{(1)}} \) and \( \delta_h^{{(2)}} \)follow normal distributions.

Appendix 2: MCMC algorithm for hierarchical modeling of advertising exposure module

First of all, we have the likelihood function for the mean parameter of the number of times for advertising exposure based on Poisson distribution as

$$ L\left( {\left\{ {{\lambda_{{jh}}}} \right\};\left\{ {{F_{{jhw}}}} \right\}} \right) = \prod\limits_{{w = 1}}^W {\prod\limits_{{h = 1}}^H {\prod\limits_{{j = 1}}^J {\exp \left( { - {\lambda_{{jh}}}{\text{GR}}{{\text{P}}_{{jw}}}} \right)\frac{{{{\left( {{\lambda_{{jh}}}{\text{GR}}{{\text{P}}_{{jw}}}} \right)}^{{{F_{{jhw}}}}}}}}{{{F_{{jhw}}}!}}} } } $$

We assume that prior distribution for π(δ j , κ j ) in hierarchical model (7) as \( {\delta_j} \sim N({\bar{\delta }_j},{\bar{\Sigma }_{{{\delta_j}}}});\,\bar{\delta } = 0,{\bar{\Sigma }_{{{\delta_j}}}} = 0.01{I_d} \) and \( {\kappa_j}^{{ - 1}}\sim{\text{Gamma}}({\bar{\kappa }_j},{\bar{\Upsilon }_{{{\kappa_j}}}});{\bar{\kappa }_j} = g,{\bar{\Upsilon }_{{{\kappa_j}}}} = {\bar{\kappa }_j} \). Then the posterior density of exposure rate parameter \( g\left( {\left\{ {{\lambda_{{jh}}}} \right\}\left| {\left\{ {{F_{{jhw}}}} \right\}} \right.} \right) \) is evaluated from the joint posterior density

$$ g\left( {\left\{ {{\lambda_{{jh}}}} \right\},\left\{ {{\delta_j}} \right\},\left\{ {{\kappa_j}} \right\}|\left\{ {{F_{{jhw}}}} \right\}} \right) \propto L\left( {\left\{ {{\lambda_{{jh}}}} \right\};\left\{ {{F_{{jhw}}}} \right\}} \right)P\left( {{\lambda_{{jh}}}|{\delta_j},{\kappa_j}} \right)\pi \left( {{\delta_j},{\kappa_j}} \right). $$

To get this joint posterior density, we employ the sampling procedure for MCMC from conditional posterior distributions:

  1. 1.

    λ jh |δ j , κ j \( \left[ {{\lambda_{{jh}}} = {Z_h}{\delta_j} + {\omega_{{jh}}},{\omega_{{jh}}} \sim N\left( {0,{\kappa_j}} \right)} \right] \)

    We use Metropolis–Hastings with a random walk algorithm \( \lambda_{{jh}}^{{(k)}} = \lambda_{{jh}}^{{(k - 1)}} + {\tilde{\omega }_{{jh}}},\,{\tilde{\omega }_{{jh}}} \sim N(0,0.01), \) and \( \lambda_{{jh}}^{{(0)}} = \sum\nolimits_{{w = 1}}^W {{F_{{jhw}}}} /\sum\nolimits_{{w = 1}}^W {{\text{GR}}{{\text{P}}_{{jw}}}}, \) with acceptance probability α

    $$ \begin{gathered} \alpha \left( {\lambda_{{jh}}^{{(k)}},\lambda_{{jh}}^{{(k - 1)}}\left| {{\delta_j},{\kappa_j},{Z_h},{F_{{jhw}}},{\text{GR}}{{\text{P}}_{{jw}}}} \right.} \right) = \hfill \\ \min \left[ {\frac{{\exp \left( { - \frac{1}{2}{{\left( {\lambda_{{jh}}^{{(k)}} - {Z_h}{\delta_j}} \right)}^{\prime }}{\kappa_j}^{{ - 1}}\left( {\lambda_{{jh}}^{{(k)}} - {Z_h}{\delta_j}} \right)} \right)\prod\limits_{{w = 1}}^W {\exp \left( { - \exp \left( {\lambda_{{jh}}^{{(k)}}} \right){\text{GR}}{{\text{P}}_{{jw}}}} \right)\left( {\frac{{{{\left( {\exp \left( {\lambda_{{jh}}^{{(k)}}} \right){\text{GR}}{{\text{P}}_{{jw}}}} \right)}^{{{F_{{jhw}}}}}}}}{{{F_{{jhw}}}!}}} \right)} }}{{\exp \left( { - \frac{1}{2}{{\left( {\lambda_{{jh}}^{{\left( {k - 1} \right)}} - {Z_h}{\delta_j}} \right)}^{\prime }}{\kappa_j}^{{ - 1}}\left( {\lambda_{{jh}}^{{\left( {k - 1} \right)}} - {Z_h}{\delta_j}} \right)} \right)\prod\limits_{{w = 1}}^W {\exp \left( { - \exp \left( {\lambda_{{jh}}^{{(k - 1)}}} \right){\text{GR}}{{\text{P}}_{{jw}}}} \right)\left( {\frac{{{{\left( {\exp \left( {\lambda_{{jh}}^{{(k - 1)}}} \right){\text{GR}}{{\text{P}}_{{jw}}}} \right)}^{{{F_{{jhw}}}}}}}}{{{F_{{jhw}}}!}}} \right)} }},1} \right]. \hfill \\ \end{gathered} $$
  2. 2.

    δ j |λ jh , κ j

    $$ \begin{gathered} {\delta_j}{{\sim }}N\left( {{\delta_j}^{*},{\Sigma_{{{\delta^{*}}}}}} \right); \hfill \\ {\delta_j}^{*} = {\left( {{Z_h}\prime{Z_h} + {{\bar{\Sigma }}_{{{\delta_j}}}}^{{ - 1}}} \right)^{{ - 1}}}\left( {{Z_h}\prime{Z_h}{{\hat{\delta }}_j} + {{\bar{\Sigma }}_{{{\delta_j}}}}^{{ - 1}}\bar{\delta }} \right),{\Sigma_{{{\delta_{{_j}}}^{*}}}} = {\left( {{Z_h}\prime{Z_h} + {{\bar{\Sigma }}_{{{\delta_j}}}}^{{ - 1}}} \right)^{{ - 1}}},{{\hat{\delta }}_j} = {({Z_h}\prime{Z_h})^{{ - 1}}}{Z_h}\lambda_{{jh}} \hfill \\ \end{gathered} $$
  3. 3.

    κ j |λ jh ,δ j

    $$ \kappa_j^{{ - 1}} \sim Gamma\left( {{{\bar{\kappa }}_j} + H,\mathop{{\left( {\bar{\Upsilon }_{\kappa }^{{ - 1}} + R} \right)}}\nolimits^{{ - 1}} } \right),\,R = \sum\limits_{{h = 1}}^H \,\mathop{{\left( {{\lambda_{{jh}}} - {Z_h}{\delta_j}} \right)}}\nolimits^{\prime} \left( {{\lambda_{{jh}}} - {Z_h}{\delta_j}} \right) $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ban, M., Terui, N. & Abe, M. A brand choice model for TV advertising management using single-source data. Mark Lett 22, 373–389 (2011). https://doi.org/10.1007/s11002-010-9130-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11002-010-9130-1

Keywords

Navigation