Skip to main content
Log in

A design method of Voronoi porous structures with graded relative elasticity distribution for functionally gradient porous materials

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

FGPMs (functionally gradient porous materials) can satisfy multifold functional constraints with minimizing weights as they are advanced composite materials showing hierarchical mechanical properties. However, tailoring the graded relative elasticity distribution of the FGPMs according to demands is still a big trouble, especially for the FGPMs with complex interior structures. In this context, this paper proposes an improved FGPMs design method for tailoring the graded relative elasticity field with stochastic Voronoi structures, which are driven by the FEA (finite element analysis) results. Firstly, a kind of open-cell porous structure is built for FGPMs based on 3D Voronoi diagrams and implicit surfaces. An external frame is generated outside the Voronoi structure to enhance the modeling adaptability and keep geometric and mechanical continuity. Then, two mapping models are established for tailoring the elasticity fields of the FGPMs. One is from the relative elasticity field to the relative density field based on Ashby-Gibson model, wherein, the relative elasticity field is obtained from the FEA results. The other one is from the obtained relative density field to the Voronoi site density field that drives the generation of the open-cell Voronoi porous structure. Finally, the proposed method is experimentally and numerically validated. The results show that both the geometric modeling ability and the elasticity tailoring accuracy are superior, and the FGPMs produced by our method have better mechanical performance compared to other FGPMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig.15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (51575196), Fujian Province Science and Technology Planning Project (2019H0014) and Xiamen Science and Technology Project Foundation (3502Z20203028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Cao, W., Zhang, L. et al. A design method of Voronoi porous structures with graded relative elasticity distribution for functionally gradient porous materials. Int J Mech Mater Des 17, 863–883 (2021). https://doi.org/10.1007/s10999-021-09558-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-021-09558-6

Keywords

Navigation