Skip to main content
Log in

Complete monotonicity of a function involving the gamma function and applications

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

In the article the authors present necessary and sufficient conditions for a function involving the logarithm of the gamma function to be completely monotonic and apply these results to bound the gamma function \(\Gamma (x)\), the \(n\)-th harmonic number \(\sum _{k=1}^n\frac{1}{k}\), and the factorial \(n!\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz, I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series 55, 4th printing, with corrections, Washington, (1965)

  2. R.D. Atanassov, U.V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions. C. R. Acad. Bulgare Sci. 41(2), 21–23 (1988)

    MATH  MathSciNet  Google Scholar 

  3. C. Berg, Integral representation of some functions related to the gamma function. Mediterr. J. Math. 1(4), 433–439 (2004). doi:10.1007/s00009-004-0022-6

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Bukac, T. Burić, N. Elezović, Stirling’s formula revisited via some classical and new inequalities. Math. Inequal. Appl. 14(1), 235–245 (2011). doi:10.7153/mia-14-20

    MathSciNet  Google Scholar 

  5. P. Cerone, S.S. Dragomir, Midpoint-type rules from an inequality point of view, in Handbook of Analytic-Computational Methods in Applied Mathematics, ed. by G. Anastassiou (CRC Press, New York, 2000), pp. 135–200

    Google Scholar 

  6. P. Cerone, S.S. Dragomir, Midpoint-type rules from an inequality point of view, in Handbook of Analytic-Computational Methods in Applied Mathematics, ed. by G. Anastassiou (CRC Press, New York, 2000), pp. 135–200

    Google Scholar 

  7. C.-P. Chen, F. Qi, The best bounds of the \(n\)-th harmonic number. Glob. J. Appl. Math. Math. Sci. 1(1), 41–49 (2008)

    Google Scholar 

  8. B.-N. Guo, F. Qi, A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function. Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 72(2), 21–30 (2010)

    MATH  MathSciNet  Google Scholar 

  9. B.-N. Guo, F. Qi, Sharp bounds for harmonic numbers. Appl. Math. Comput. 218(3), 991–995 (2011). doi:10.1016/j.amc.2011.01.089

    Article  MATH  MathSciNet  Google Scholar 

  10. B.-N. Guo, F. Qi, Some properties of the psi and polygamma functions. Hacet. J. Math. Stat. 39(2), 219–231 (2010)

    MATH  MathSciNet  Google Scholar 

  11. B.-N. Guo, F. Qi, Two new proofs of the complete monotonicity of a function involving the psi function. Bull. Korean Math. Soc. 47(1), 103–111 (2010). doi:10.4134/bkms.2010.47.1.103

    Article  MATH  MathSciNet  Google Scholar 

  12. B.-N. Guo, Y.-J. Zhang, F. Qi, Refinements and sharpenings of some double inequalities for bounding the gamma function. J. Inequal. Pure Appl. Math. 9(1), 17 (2008). http://www.emis.de/journals/JIPAM/article953.html

  13. S. Guo, Some classes of completely monotonic functions involving the gamma function. Int. J. Pure Appl. Math. 30(4), 561–566 (2006)

    MATH  MathSciNet  Google Scholar 

  14. S. Guo, F. Qi, H.M. Srivastava, Necessary and sufficient conditions for two classes of functions to be logarithmically completely monotonic. Integral Transforms Spec. Funct. 18(11), 819–826 (2007). doi:10.1080/10652460701528933

    Article  MathSciNet  Google Scholar 

  15. A. Hoorfar, F. Qi, Some new bounds for Mathieu’s series. Abstr. Appl. Anal. 2007, 10 (2007). doi:10.1155/2007/94854

    Article  MathSciNet  Google Scholar 

  16. W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, Berlin, 1966)

    Book  MATH  Google Scholar 

  17. D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Classical and New Inequalities in Analysis (Kluwer Academic Publishers, Dordrecht-Boston-London, 1993)

    Book  MATH  Google Scholar 

  18. F. Qi, A method of constructing inequalities about \(e^x\). Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 8, 16–23 (1997)

    MATH  MathSciNet  Google Scholar 

  19. F. Qi, An integral expression and some inequalities of Mathieu type series. Rostock. Math. Kolloq. 58, 37–46 (2004)

    Google Scholar 

  20. F. Qi, Bounds for the ratio of two gamma functions. J. Inequal. Appl. 2010, 84 (2010). doi:10.1155/2010/493058

    Article  Google Scholar 

  21. F. Qi, Complete monotonicity of a function involving the gamma function and applications (2011). http://arxiv.org/abs/1104.4442

  22. F. Qi, Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions. Mah. Inequal. Appl. 18 (2015). http://arxiv.org/abs/1302.6731 (in press)

  23. F. Qi, C.-P. Chen, A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 296(2), 603–607 (2004). doi:10.1016/j.jmaa.2004.04.026

    Article  MATH  MathSciNet  Google Scholar 

  24. F. Qi, C.-P. Chen, B.-N. Guo, Notes on double inequalities of Mathieu’s series. Int. J. Math. Math. Sci. 2005(16), 2547–2554 (2005). doi:10.1155/IJMMS.2005.2547

    Article  MATH  MathSciNet  Google Scholar 

  25. F. Qi, R.-Q. Cui, C.-P. Chen, B.-N. Guo, Some completely monotonic functions involving polygamma functions and an application. J. Math. Anal. Appl. 310(1), 303–308 (2005). doi:10.1016/j.jmaa.2005.02.016

    Article  MATH  MathSciNet  Google Scholar 

  26. F. Qi, B.-N. Guo, Some properties of extended remainder of Binet’s first formula for logarithm of gamma function. Math. Slovaca 60(4), 461–470 (2010). doi:10.2478/s12175-010-0025-7

    Article  MathSciNet  Google Scholar 

  27. F. Qi, Z.-L. Wei, Q. Yang, Generalizations and refinements of Hermite-Hadamard’s inequality. Rocky Mountain J. Math. 35(1), 235–251 (2005). doi:10.1216/rmjm/1181069779

    Article  MATH  MathSciNet  Google Scholar 

  28. R.L. Schilling, R. Song, Z. Vondraček, Bernstein Functions, de Gruyter Studies in Mathematics 37 (De Gruyter, Berlin, 2010)

  29. H. Şevli, N. Batır, Complete monotonicity results for some functions involving the gamma and polygamma functions. Math. Comput. Model. 53, 1771–1775 (2011). doi:10.1016/j.mcm.2010.12.055

    Article  MATH  Google Scholar 

  30. D.V. Widder, The Laplace Transform (Princeton University Press, Princeton, 1946)

    Google Scholar 

  31. J.-L. Zhao, B.-N. Guo, F. Qi, A refinement of a double inequality for the gamma function. Publ. Math. Debrecen 80(3–4), 333–342 (2012). doi:10.5486/PMD.2012.5010

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to express many thanks to the anonymous referee for his/her careful comments on and accurate corrections to the original version of this paper. The present investigation was supported in part by the Natural Science Foundation Project of Chongqing, China under Grant CSTC2011JJA00024, the Research Project of Science and Technology of Chongqing Education Commission, China under Grant KJ120625, and the Fund of Chongqing Normal University, China under Grant 10XLR017 and 2011XLZ07

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, F., Luo, QM. Complete monotonicity of a function involving the gamma function and applications. Period Math Hung 69, 159–169 (2014). https://doi.org/10.1007/s10998-014-0056-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-014-0056-x

Keywords

Mathematics Subject Classification

Navigation