Skip to main content
Log in

Combinatorial numbers in binary recurrences

  • Published:
Periodica Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We give several effective and explicit results concerning the values of some polynomials in binary recurrence sequences. First we provide an effective finiteness theorem for certain combinatorial numbers (binomial coefficients, products of consecutive integers, power sums, alternating power sums) in binary recurrence sequences, under some assumptions. We also give an efficient algorithm (based on genus 1 curves) for determining the values of certain degree 4 polynomials in such sequences. Finally, partly by the help of this algorithm we completely determine all combinatorial numbers of the above type for the small values of the parameter involved in the Fibonacci, Lucas, Pell and associated Pell sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. U. Alfred, On square Lucas numbers, Fibonacci Quart., 2 (1964), 11–12.

    MATH  Google Scholar 

  2. A. Baker, The Diophantine equation y 2 = ax 3 + bx 2 + cx + d, J. London Math. Soc., 43 (1968), 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  3. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language., J. Symbolic Comput., 24 (1997), 235–265.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Brindza, On S-integral solutions of the equation y m = f(x), Acta Math. Hungar., 44 (1984), 133–139.

    Article  MATH  MathSciNet  Google Scholar 

  5. N. Bruin and M. Stoll, Two-cover descent on hyperelliptic curves, ArXiv preprint, arXiv: 0803.2052, 2008.

  6. Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math. (2), 163 (2006), 969–1018.

    MATH  MathSciNet  Google Scholar 

  7. J. H. E. Cohn, Square Fibonacci numbers, Etc., Fibonacci Quart., 2 (1964), 109–113.

    MATH  MathSciNet  Google Scholar 

  8. J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc., 39 (1964), 537–540.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. H. E. Cohn, Lucas and Fibonacci numbers and some Diophantine equations, Proc. Glasgow Math. Assoc., 7 (1965), 24–28.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. H. E. Cohn, Perfect Pell powers, Glasgow Math. J., 38 (1996), 19–20.

    MATH  MathSciNet  Google Scholar 

  11. I. Connell, Addendum to a paper of Harada and Lang, J. Algebra, 145 (1992), 463–467.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith., 68 (1994), 171–192.

    MATH  MathSciNet  Google Scholar 

  13. L. Hajdu and Á. Pintér, Combinatorial diophantine equations, Publ. Math. Debrecen, 56 (2000), 391–403.

    MATH  MathSciNet  Google Scholar 

  14. K. Harada and M. L. Lang, Some elliptic curves arising from the Leech lattice, J. Algebra, 125 (1989), 298–310.

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Herrmann, Bestimmung aller ganzzahligen Lösungen quartischer elliptischer diophantischer Gleichungen unter Verwendung von Linearformen in elliptischen Logarithmen, Diploma thesis, 1998.

  16. T. Kovács, Combinatorial Diophantine equations — the genus 1 case, Publ. Math. Debrecen, 72 (2008), 243–255.

    MATH  MathSciNet  Google Scholar 

  17. W. L. Mcdaniel, Triangular numbers in the Pell sequence, Fibonacci Quart., 34 (1996), 105–107.

    MATH  MathSciNet  Google Scholar 

  18. L. Ming, On triangular Fibonacci numbers, Fibonacci Quart., 27 (1989), 98–108.

    MATH  MathSciNet  Google Scholar 

  19. L. Ming, On triangular Lucas numbers, Applications of Fibonacci Numbers, 4 (1991), 231–240.

    Google Scholar 

  20. L. Moser and L. Carlitz, Problem H-2, Fib. Quarterly, 1 (1963), 46.

    Google Scholar 

  21. I. Nemes and A. Pethő, Polynomial values in linear recurrences II, J. Number Theory, 24 (1986), 47–53.

    Article  MATH  MathSciNet  Google Scholar 

  22. C. S. Ogilvy, Tomorrow’s math, unsolved problems for the amateur, Oxford Univ. Press, 1962.

  23. A. Pethő, On the Solution of the Equation G n = P(x), Fibonacci Numbers and Their Applications, D. Reidel Publ. Comp., 1986, 193–201.

  24. A. Pethö, Diofantoszi egyenletek effektív és explicit megoldása, Academic doctoral dissertation, Hungarian Academy of Sciences, 1990 (in Hungarian).

  25. A. Pethő, The Pell sequence contains only trivial perfect powers, Sets, Graphs and Numbers, Budapest (Hungary), Colloq. Math. Soc. János Bolyai 60, 1991, 561–568.

  26. Y. Ping-Zhi, On a special diophantine equation a( x n ) = by r + c, Publ. Math. Debrecen, 44 (1994), 137–143.

    MathSciNet  Google Scholar 

  27. Á. Pintér and Cs. Rakaczki, On the zeros of shifted Bernoulli polynomials, Appl. Math. Comput., 187 (2007), 379–383.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Rademacher, Topics in analytic number theory, Die Grundlehren der math. Wissenschaften, Band 169, Springer-Verlag, Berlin, 1973.

    MATH  Google Scholar 

  29. Cs. Rakaczki, On some Diophantine results related to Euler polynomials, Period. Math. Hungar., 57 (2008), 61–71.

    Article  MathSciNet  Google Scholar 

  30. A. P. Rollett, Problem 5080, Amer. Math. Monthly, 70 (1963), 216.

    Article  MathSciNet  Google Scholar 

  31. T. N. Shorey and R. Tijdeman, Exponential diophantine equation, Cambridge University Press, 1986.

  32. R. J. Stroeker and N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith., 67 (1994), 177–196.

    MATH  MathSciNet  Google Scholar 

  33. R. J. Stroeker and N. Tzanakis, Computing all integer solutions of a genus 1 equation, Math. Comp., 72 (2003), 1935–1946.

    Article  MathSciNet  Google Scholar 

  34. L. Szalay, Some polynomial values in binary recurrences, Rev. Colombiana Mat., 35 (2001), 99–106.

    MATH  MathSciNet  Google Scholar 

  35. L. Szalay, On the resolution of the equation U n = ( x3 and V n = ( x3 ), Fibonacci Quart., 40 (2002), 9–12.

    MATH  MathSciNet  Google Scholar 

  36. Sz. Tengely, On the Diophantine equation F(x) = G(y), Acta Arith., 110 (2003), 185–200.

    Article  MATH  MathSciNet  Google Scholar 

  37. Sz. Tengely, Finding g-gonal numbers in recurrence sequences, submitted.

  38. N. Tzanakis, Solving Elliptic Diophantine Equations by estimating Linear Forms in Elliptic Logarithms. The case of Quartic Equations, Acta Arith., 75 (1996), 165–190.

    MATH  MathSciNet  Google Scholar 

  39. O. Wyler, In the Fibonacci series F 1 = 1, F 2 = 1, F n+1 = F n + F n−1 the first, second and twelfth terms are squares, Amer. Math. Monthly, 71 (1964), 221–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tünde Kovács.

Additional information

Communicated by Attila Pethő

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovács, T. Combinatorial numbers in binary recurrences. Period Math Hung 58, 83–98 (2009). https://doi.org/10.1007/s10998-009-9083-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10998-009-9083-2

Mathematics subject classification numbers

Key words and phrases

Navigation