Skip to main content
Log in

Reading, Mathematics and Fine Motor Skills at 5 Years of Age in US Children who were Extremely Premature at Birth

  • Published:
Maternal and Child Health Journal Aims and scope Submit manuscript

Abstract

Objectives The prevalence of extreme prematurity at birth has increased, but little research has examined its impact on developmental outcomes in large representative samples within the United States. This study examined the association of extreme prematurity with kindergarteners’ reading skills, mathematics skills and fine motor skills. Methods The early childhood longitudinal study-birth cohort, a representative sample of the US children born in 2001 was analyzed for this study. Early reading and mathematics skills and fine motor skills were compared among 200 extremely premature children (EPC) (gestational age <28 wks or birthweight <1000 g), 500 premature children (PC), and 4300 term children (TC) (≥37wks or ≥2500 g). Generalized linear regression analyses included sampling weights, children’s age, race, sex, and general health status, and parental marital status and education among singleton children. Results At age 5 years, EPC were 2.6(95 % CI 1.7–3.8) times more likely to fail build a gate and were 3.1(95 % CI 1.6–5.8) times more likely to fail all four drawing tasks compared to TC (p values <0.001). Fine motor performance of PC (failed to build a gate, 1.3[95 % CI 1.0–1.7]; failed to draw all four shapes, 1.1[95 % CI 0.8–1.6]) was not significantly different from TC. Mean early reading scale score (36.8[SE:1.3]) of EPC was 4.0 points lower than TC (p value < 0.0001) while mean reading score (39.9[SE:1.4]) of PC was not significantly different from TC (40.8[SE:1.1]). Mean mathematics scale score were significantly lower for both EPC (35.5[SE:1.0], p value < 0.001) and PC (39.8[SE:0.8], p value = 0.023) compared to TC (41.0[SE:0.6]). Conclusions for Practice Extreme prematurity at birth was associated with cognitive and fine motor delays at age 5 years. This suggests that based on a nationally representative sample of infants, the biological risk of extreme prematurity persists after adjusting for other factors related to development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aarnoudse-Moens, C. S., Weisglas-Kuperus, N., van Goudoever, J. B., & Oosterlaan, J. (2009). Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics, 124(2), 717–728.

    Article  PubMed  Google Scholar 

  • Anderson, P., & Doyle, L. W. (2003). Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA, the Journal of the American Medical Association, 289(24), 3264–3272.

    Article  PubMed  Google Scholar 

  • Barnhart, R. C., Davenport, M. J., Epps, S. B., & Nordquist, V. M. (2003). Developmental coordination disorder. Archives of Disease in Childhood. Fetal and Neonatal Edition, 83(8), 722–731.

    Google Scholar 

  • Bhat, R., Salas, A. A., Foster, C., Carlo, W. A., & Ambalavanan, N. (2012). Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics, 129(3), e682–e689.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bode, M. M., D’Eugenio, D. B., Forsyth, N., Coleman, J., Gross, C. R., & Gross, S. J. (2009). Outcome of extreme prematurity: A prospective comparison of 2 regional cohorts born 20 years apart. Pediatrics, 124(3), 866–874.

    Article  PubMed  Google Scholar 

  • Bonifacio, S. L., Glass, H. C., Chau, V., Berman, J. I., Xu, D., Brant, R., et al. (2010). Extreme premature birth is not associated with impaired development of brain microstructure. The Journal of pediatrics, 157(5), 726–732.

    Article  PubMed  PubMed Central  Google Scholar 

  • Broussard, C. S., Gilboa, S. M., Lee, K. A., Oster, M., Petrini, J. R., & Honein, M. A. (2012). Racial/ethnic differences in infant mortality attributable to birth defects by gestational age. Pediatrics, 130(3), e518–e527.

    Article  PubMed  PubMed Central  Google Scholar 

  • Casey, P. H., Whiteside-Mansell, L., Barrett, K., Bradley, R. H., & Gargus, R. (2006). Impact of prenatal and/or postnatal growth problems in low birth weight preterm infants on school-age outcomes: An 8-year longitudinal evaluation. Pediatrics, 118(3), 1078–1086.

    Article  PubMed  Google Scholar 

  • Duncan, S. E., & De Avila, E. A. (1998). PreLAS 2000. Monterey, CA: CTB/McGraw-Hill.

    Google Scholar 

  • Dunn, L. M., & Dunn, L. M. (1997). Peabody picture vocabulary test (PPVT-III) (3rd ed.). Upper Saddle River, NJ: Pearson Publishing.

    Google Scholar 

  • French, N. (2007). Consensus statement on perinatal care. Journal of Paediatrics and Child Health, 43(6), 492–493.

    Article  PubMed  Google Scholar 

  • Ginsburg, H. P., & Baroody, A. J. (2003). Test of early mathematics ability (3rd ed.). Austin, TX: PRO-ED Inc.

    Google Scholar 

  • Gray, R., Petrou, S., Hockley, C., & Gardner, F. (2007). Self-reported health status and health-related quality of life of teenagers who were born before 29 weeks’ gestational age. Pediatrics, 120(1), e86–e93.

    Article  PubMed  Google Scholar 

  • Hack, M., Breslau, N., Aram, D., Weissman, B., Klein, N., & Borawski-Clark, E. (1992). The effect of very low birth weight and social risk on neurocognitive abilities at school age. Journal of Developmental and Behavioral Pediatrics: JDBP, 13(6), 412–420.

    Article  CAS  PubMed  Google Scholar 

  • Hack, M., Forrest, C. B., Schluchter, M., Taylor, H. G., Drotar, D., Holmbeck, G., et al. (2011). Health status of extremely low-birth-weight children at 8 years of age: Child and parent perspective. Archives of Pediatrics and Adolescent Medicine, 165(10), 922–927.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hack, M., Schluchter, M., Margevicius, S., Andreias, L., Taylor, H. G., & Cuttler, L. (2014). Trajectory and correlates of growth of extremely-low-birth-weight adolescents. Pediatric Research, 75(2), 358–366.

    Article  PubMed  Google Scholar 

  • Hack, M., Taylor, H. G., Drotar, D., Schluchter, M., Cartar, L., Andreias, L., et al. (2005). Chronic conditions, functional limitations, and special health care needs of school-aged children born with extremely low-birth-weight in the 1990s. JAMA, the Journal of the American Medical Association, 294(3), 318–325.

    Article  CAS  PubMed  Google Scholar 

  • Hack, M., Taylor, H. G., Klein, N., & Mercuri-Minich, N. (2000). Functional limitations and special health care needs of 10- to 14-year-old children weighing less than 750 grams at birth. Pediatrics, 106(3), 554–560.

    Article  CAS  PubMed  Google Scholar 

  • Hille, E. T., den Ouden, A. L., Bauer, L., van den Oudenrijn, C., Brand, R., & Verloove-Vanhorick, S. P. (1994). School performance at nine years of age in very premature and very low birth weight infants: perinatal risk factors and predictors at five years of age. Collaborative project on preterm and small for gestational age (POPS) infants in The Netherlands. The Journal of pediatrics, 125(3), 426–434.

    Article  CAS  PubMed  Google Scholar 

  • Hintz, S. R., Kendrick, D. E., Vohr, B. R., Poole, W. K., & Higgins, R. D. (2005). Changes in neurodevelopmental outcomes at 18 to 22 months’ corrected age among infants of less than 25 weeks’ gestational age born in 1993–1999. Pediatrics, 115(6), 1645–1651.

    Article  PubMed  Google Scholar 

  • Hoekstra, R. E., Ferrara, T. B., Couser, R. J., Payne, N. R., & Connett, J. E. (2004). Survival and long-term neurodevelopmental outcome of extremely premature infants born at 23–26 weeks’ gestational age at a tertiary center. Pediatrics, 113(1 Pt 1), e1–e6.

    Article  PubMed  Google Scholar 

  • Johnson, S. (2007). Cognitive and behavioural outcomes following very preterm birth. Seminars in Fetal and Neonatal Medicine, 12(5), 363–373.

    Article  PubMed  Google Scholar 

  • Kilbride, H. W., Thorstad, K., & Daily, D. K. (2004). Preschool outcome of less than 801-gram preterm infants compared with full-term siblings. Pediatrics, 113(4), 742–747.

    Article  PubMed  Google Scholar 

  • Klebanoff, M. A., & Keim, S. A. (2011). Epidemiology: The changing face of preterm birth. Clinics in Perinatology, 38(3), 339–350.

    Article  PubMed  Google Scholar 

  • Korvenranta, E., Lehtonen, L., Peltola, M., Hakkinen, U., Andersson, S., Gissler, M., et al. (2009). Morbidities and hospital resource use during the first 3 years of life among very preterm infants. Pediatrics, 124(1), 128–134.

    Article  PubMed  Google Scholar 

  • Kuczmarski, R. J., Ogden, C. L., Grummer-Strawn, L. M., Flegal, K. M., Guo, S. S., Wei, R., et al. (2000). CDC growth charts: United States. Advance Data, 8(314), 1–27.

    Google Scholar 

  • Lee, E. S., Forthoffer, R. N., & Lorimor, R. J. (1989). Analyzing complex survey data (Vol. 71). Beverly Hills, CA: Sage Publications Inc.

    Google Scholar 

  • Leversen, K. T., Sommerfelt, K., Ronnestad, A., Kaaresen, P. I., Farstad, T., Skranes, J., et al. (2011). Prediction of neurodevelopmental and sensory outcome at 5 years in Norwegian children born extremely preterm. Pediatrics, 127(3), e630–e638.

    Article  PubMed  Google Scholar 

  • Mikkola, K., Ritari, N., Tommiska, V., Salokorpi, T., Lehtonen, L., Tammela, O., et al. (2005). Neurodevelopmental outcome at 5 years of age of a national cohort of extremely low birth weight infants who were born in 1996–1997. Pediatrics, 116(6), 1391–1400.

    Article  PubMed  Google Scholar 

  • Najarian, M., Snow, K., Lennon, J., and Kinsey, S. (2010). Early childhood longitudinal study, birth cohort (ECLS-B), kindergarten 2006 and 2007 data file user’s manual (2010-010). Washington, D.C.: National Center for Eudcation Statistics, Institute of Education Sciences, U.S. Department of Education.

  • Orchinik, L. J., Taylor, H. G., Espy, K. A., Minich, N., Klein, N., Sheffield, T., et al. (2011). Cognitive outcomes for extremely preterm/extremely low birth weight children in kindergarten. Journal of the International Neuropsychological Society: JINS, 17(6), 1067–1079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pascoe, J. M., & Earp, J. A. (1984). The effect of mothers’ social support and life changes on the stimulation of their children in the home. American Journal of Public Health, 74(4), 358–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rijken, M., Stoelhorst, G. M. S. J., Martens, S. E., van Zweiten, P. H. T., Brand, R., Maarten Wit, J., et al. (2003). Mortality and neurologic, mental, and psychomotor development at 2 years in infants born less than 27 weeks’ gestation: The Leiden follow-up project on prematurity. Pediatrics, 112(2), 351–358.

    Article  PubMed  Google Scholar 

  • Saigal, S., Rosenbaum, P. L., Feeny, D., Burrows, E., Furlong, W., Stoskopf, B. L., et al. (2000). Parental perspectives of the health status and health-related quality of life of teen-aged children who were extremely low birth weight and term controls. Pediatrics, 105(3 Pt 1), 569–574.

    Article  CAS  PubMed  Google Scholar 

  • Shonkoff, J. P. (1984). Social support and the development of vulnerable children. American Journal of Public Health, 74(4), 310–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snow, K., Derecho, A., Wheeless, S., Lennon, J., Rosen, J., Rogers, J., et al. (2010). Early childhood longitudinal study, birth cohort (ECLS-B), kindergarten 2006 and 2007 data file user’s manual (NCES 2010-010). Washington, DC: National Center for Education Statistics, Institute of Education Sciences.

    Google Scholar 

  • Spittle, A., Orton, J., Anderson, P., Boyd, R., & Doyle, L. W. (2012). Early developmental intervention programmes post-hospital discharge to prevent motor and cognitive impairments in preterm infants. The Cochrane Database of Systematic Reviews, 12, CD005495.

    PubMed  Google Scholar 

  • Tanis, J. C., van der Ree, M. H., Roze, E., Huis In’t Veld, A. E., van den Berg, P. P., Van Braeckel, K. N., et al. (2012). Functional outcome of very preterm-born and small-for-gestational-age children at school age. Pediatric Research, 72(6), 641–648.

    Article  PubMed  Google Scholar 

  • Taylor, H. G., Klein, N., Anselmo, M. G., Minich, N., Espy, K. A., & Hack, M. (2011). Learning problems in kindergarten students with extremely preterm birth. Archives of Pediatrics and Adolescent Medicine, 165(9), 819–825.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tommiska, V., Heinonen, K., Kero, P., Pokela, M. L., Tammela, O., Jarvenpaa, A. L., et al. (2003). A national two year follow up study of extremely low birthweight infants born in 1996–1997. Archives of Disease in Childhood. Fetal and Neonatal Edition, 88(1), F29–F35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vohr, B. R., Wright, L. L., Dusick, A. M., Mele, L., Verter, J., Steichen, J. J., et al. (2000). Neurodevelopmental and functional outcomes of extremely low birth weight infants in the National Institute of Child Health and Human Development Neonatal Research Network, 1993–1994. Pediatrics, 105(6), 1216–1226.

    Article  CAS  PubMed  Google Scholar 

  • Vohr, B. R., Wright, L. L., Poole, W. K., & McDonald, S. A. (2005). Neurodevelopmental outcomes of extremely low birth weight infants < 32 weeks’ gestation between 1993 and 1998. Pediatrics, 116(3), 635–643.

    Article  PubMed  Google Scholar 

  • Woythaler, M., McCormick, M. C., Mao, W. Y., & Smith, V. C. (2015). Late preterm infants and neurodevelopmental outcomes at kindergarten. Pediatrics, 136(3), 424–431.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Restricted use of ECLS-B data were obtained by approval and permission of the Institute of Education Sciences (IES) Data Security Office of the U.S. Department of Education, National Center for Education Statistics. We are grateful for multiple sponsoring organizations and IES Data Security Office for their assistance. The material contained in this study has been partly presented as an abstract at the 52nd Annual Meeting of the European Society for Paediatric Research in 2011. This research was a non-funded study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miryoung Lee.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Pascoe, J.M. & McNicholas, C.I. Reading, Mathematics and Fine Motor Skills at 5 Years of Age in US Children who were Extremely Premature at Birth. Matern Child Health J 21, 199–207 (2017). https://doi.org/10.1007/s10995-016-2109-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10995-016-2109-7

Keywords

Navigation