Skip to main content

Advertisement

Log in

Reducing Prenatal Phthalate Exposure Through Maternal Dietary Changes: Results from a Pilot Study

  • Notes from the Field
  • Published:
Maternal and Child Health Journal Aims and scope Submit manuscript

Abstract

Diet is a major source of exposure to certain phthalates, a class of environmental chemicals associated with endocrine disruption in animal models and humans. Several studies have attempted to lower phthalate exposure through carefully designed dietary interventions, with inconsistent results. We conducted a dietary intervention pilot study with the objective to lower phthalate exposure in low-income pregnant women, a particularly vulnerable population. Ten pregnant women consumed a provided diet consisting of mostly fresh, organic foods for 3 days. We collected urine samples before, during, and after the intervention and conducted semi-structured interviews to assess the feasibility and acceptability of the intervention. We used repeated measures ANOVA and paired t-tests to assess differences in urinary phthalate metabolite concentrations across the study, focusing on the metabolites of di-2-ethylhexyl phthalate (DEHP), a phthalate of particular interest, and their molar sum (∑DEHP). Phthalate metabolite concentrations did not change appreciably during the intervention period. We observed no significant difference in ∑DEHP metabolite concentrations across the three time periods (F = 0.21; adjusted p value = 0.65), and no reduction during the intervention as compared to baseline (t = −1.07, adjusted p value = 0.51). Results of interviews indicated that participants were not motivated to make dietary changes to potentially reduce chemical exposures outside of the study. Despite the small sample size, our results suggest that promoting dietary changes to lower phthalate exposure may not be an effective public health measure. Reducing the use of phthalates in food processing and packaging may be a better solution to lowering exposure on a population level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. ACOG. (2013).Committee Opinion No. 575: Exposure to toxic environmental agents. Obstetrics and Gynecology, 122(4):931–5. doi:10.1097/01.aog.0000435416.21944.54

  2. Bjornberg, K. A., Vahter, M., Grawe, K. P., et al. (2005). Methyl mercury exposure in Swedish women with high fish consumption. Science of the Total Environment, 341(1–3), 45–52. doi:10.1016/j.scitotenv.2004.09.033.

    Article  PubMed  Google Scholar 

  3. Nair, A., Jordan, M., Watkins, S., et al. (2014). Fish consumption and hair mercury levels in women of childbearing age, Martin County, Florida. Maternal and Child Health Journal,. doi:10.1007/s10995-014-1475-2.

    PubMed  Google Scholar 

  4. Svensson, B. G., Schutz, A., Nilsson, A., et al. (1992). Fish as a source of exposure to mercury and selenium. Science of the Total Environment, 126(1–2), 61–74.

    Article  CAS  PubMed  Google Scholar 

  5. Lu, C., Barr, D. B., Pearson, M. A., et al. (2008). Dietary intake and its contribution to longitudinal organophosphorus pesticide exposure in urban/suburban children. Environmental Health Perspectives, 116(4), 537–542. doi:10.1289/ehp.10912.

    Article  PubMed Central  PubMed  Google Scholar 

  6. CDC (2009). Fourth report on human exposure to environmental chemicals. In Services USDoHaH (Ed.). Atlanta, GA: Centers for Disease Control and Prevention; 2009.

  7. Woodruff, T. J., Zota, A. R., & Schwartz, J. M. (2011). Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environmental Health Perspectives, 119(6), 878–885. doi:10.1289/ehp.1002727.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Silva, M. J., Barr, D. B., Reidy, J. A., et al. (2004). Urinary levels of seven phthalate metabolites in the U.S. population from the National Health and Nutrition Examination Survey (NHANES) 1999–2000. Environmental Health Perspectives, 112(3), 331–338.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Koch, H. M., & Calafat, A. M. (2009). Human body burdens of chemicals used in plastic manufacture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1526), 2063–2078. doi:10.1098/rstb.2008.0208.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Swan, S. H., Main, K. M., Liu, F., et al. (2005). Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environmental Health Perspectives, 113(8), 1056–1061.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Suzuki, Y., Yoshinaga, J., Mizumoto, Y., et al. (2012). Foetal exposure to phthalate esters and anogenital distance in male newborns. International Journal of Andrology, 35(3), 236–244. doi:10.1111/j.1365-2605.2011.01190.x.

    Article  CAS  PubMed  Google Scholar 

  12. Gray, L. E., Ostby, J., Furr, J., et al. (2001). Effects of environmental antiandrogens on reproductive development in experimental animals. Human Reproduction Update, 7(3), 248–264.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, Y., Ha, E. H., Kim, E. J., et al. (2011). Prenatal exposure to phthalates and infant development at 6 months: Prospective mothers and children’s environmental health (MOCEH) study. Environmental Health Perspectives, 119(10), 1495–1500. doi:10.1289/ehp.1003178.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Engel, S. M., Miodovnik, A., Canfield, R. L., et al. (2010). Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environmental Health Perspectives, 118(4), 565–571. doi:10.1289/ehp.0901470.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ferguson, K. K., McElrath, T. F., & Meeker, J. D. (2014). Environmental phthalate exposure and preterm birth. JAMA Pediatrics, 168(1), 61–67. doi:10.1001/jamapediatrics.2013.3699.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kobrosly, R. W., Evans, S., Miodovnik, A., et al. (2014). Prenatal phthalate exposures and neurobehavioral development scores in boys and girls at 6–10 years of age. Environmental Health Perspectives, 122(5), 521–528. doi:10.1289/ehp.1307063.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Bornehag, C. G., Carlstedt, F., Jonsson, B. A., et al. (2014). Prenatal phthalate exposures and anogenital distance in Swedish boys. Environmental Health Perspectives,. doi:10.1289/ehp.1408163.

    PubMed Central  PubMed  Google Scholar 

  18. Ferguson, K. K., McElrath, T. F., Ko, Y. A., et al. (2014). Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth. Environment International, 70, 118–124. doi:10.1016/j.envint.2014.05.016.

    Article  PubMed  Google Scholar 

  19. Lien, Y. J., Ku, H. Y., Su, P. H., et al. (2014). Prenatal exposure to phthalate esters and behavioral syndromes in children at eight years of age: Taiwan maternal and infant cohort study. Environmental Health Perspectives,. doi:10.1289/ehp.1307154.

    Google Scholar 

  20. Whyatt, R. M., Perzanowski, M. S., Just, A. C., et al. (2014). Asthma in inner-city children at 5–11 years of age and prenatal exposure to phthalates: The Columbia Center for children’s environmental health cohort. Environmental Health Perspectives, 122(10), 1141–1146. doi:10.1289/ehp.1307670.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Koch, H. M., Lorber, M., Christensen, K. L., et al. (2013). Identifying sources of phthalate exposure with human biomonitoring: results of a 48 h fasting study with urine collection and personal activity patterns. International Journal of Hygiene and Environmental Health, 216(6), 672–681. doi:10.1016/j.ijheh.2012.12.002.

    Article  CAS  PubMed  Google Scholar 

  22. Wormuth, M., Scheringer, M., Vollenweider, M., et al. (2006). What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Analysis, 26(3), 803–824. doi:10.1111/j.1539-6924.2006.00770.x.

    Article  PubMed  Google Scholar 

  23. Kessler, W., Numtip, W., Volkel, W., et al. (2012). Kinetics of di(2-ethylhexyl) phthalate (DEHP) and mono(2-ethylhexyl) phthalate in blood and of DEHP metabolites in urine of male volunteers after single ingestion of ring-deuterated DEHP. Toxicology and Applied Pharmacology, 264(2), 284–291. doi:10.1016/j.taap.2012.08.009.

    Article  CAS  PubMed  Google Scholar 

  24. Ji, K., Lim Kho, Y., Park, Y., et al. (2010). Influence of a five-day vegetarian diet on urinary levels of antibiotics and phthalate metabolites: A pilot study with “Temple Stay” participants. Environmental Research, 110(4), 375–382. doi:10.1016/j.envres.2010.02.008.

    Article  CAS  PubMed  Google Scholar 

  25. RCOG. Chemical exposures during pregnancy: Dealing with potential, but unproven, risks to child health: Royal College of Obstetricians and Gynecologists2013 May 2013 Contract No.: 37.

  26. Rudel, R. A., Gray, J. M., Engel, C. L., et al. (2011). Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: Findings from a dietary intervention. Environmental Health Perspectives, 119(7), 914–920. doi:10.1289/ehp.1003170.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sathyanarayana, S., Alcedo, G., Saelens, B. E., et al. (2013). Unexpected results in a randomized dietary trial to reduce phthalate and bisphenol A exposures. Journal of Exposure Science & Environmental Epidemiology,. doi:10.1038/jes.2013.9.

    Google Scholar 

  28. FDA. Food safety for pregnant women: Food and Drug Administration; 2011. Available from: http://www.fda.gov/Food/FoodborneIllnessContaminants/PeopleAtRisk/ucm312704.htm

  29. Kaiser, L., & Allen, L. H. (2008). Position of the American Dietetic Association: nutrition and lifestyle for a healthy pregnancy outcome. Journal of the American Dietetic Association, 108(3), 553–561.

    Article  CAS  PubMed  Google Scholar 

  30. Lowe, W. L, Jr, & Karban, J. (2014). Genetics, genomics and metabolomics: New insights into maternal metabolism during pregnancy. Diabetic Medicine, 31(3), 254–262. doi:10.1111/dme.12352.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Environmental Protection Agency (EPA). (2012). Results from inert ingredient test orders issued under EPA’s endocrine disruptor screening program: New data compensation claims; Potential disapproval of inert uses pending public comment. Federal Register, pp. 15101–15104.

  32. Silva, M. J., Samandar, E., Preau, J. L., Jr., et al. (2007). Quantification of 22 phthalate metabolites in human urine. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 860(1), 106–112. doi:10.1016/j.jchromb.2007.10.023

  33. Chen, S., Barrett, E. S., Velez, M., et al. (2014). Using the health belief model to illustrate factors that influence risk assessment during pregnancy and implications for prenatal education about endocrine disruptors. Policy futures in education, 12(7), 961–974.

  34. Gale, N., Heath, G., Cameron, E., et al. (2013). Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Medical Research Methodology, 13, 117–124.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Hornung, R., & Reed, L. (1990). Estimation of average concentration in the presence of nondetectable values. Applied Occupational and Environmental Hygiene, 5(1), 46–51.

    Article  CAS  Google Scholar 

  36. Boeniger, M. F., Lowry, L. K., & Rosenberg, J. (1993). Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: A review. American Industrial Hygiene Association Journal, 54(10), 615–627. doi:10.1080/15298669391355134.

    Article  CAS  PubMed  Google Scholar 

  37. Wolff, M. S., Engel, S. M., Berkowitz, G. S., et al. (2008). Prenatal phenol and phthalate exposures and birth outcomes. Environmental Health Perspectives, 116(8), 1092–1097. doi:10.1289/ehp.11007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Davis, C. S. (2002). Statistical methods for the analysis of repeated measurements. New York: Springer.

    Google Scholar 

  39. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289–300.

    Google Scholar 

  40. Team RC. (2014). R: A language and environment for statistical computing.

  41. Consumer Product Safety Improvement Act. In Congress HR-t (Ed.). GovTrack.us2007.

Download references

Acknowledgments

This study was supported by NIH grants P30 ES001247 and K12 ES019852-01. We thank the URMC CTSI Bionutrition core, particularly Pat Stewart, Nellie Wixom, and Robin Peck. We gratefully acknowledge Antonia Calafat, Xiaoyun Ye, Manori Silva, Ella Samandar, Jim Preau, and Tao Jia for technical assistance in measuring urinary phthalate metabolite concentrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily S. Barrett.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrett, E.S., Velez, M., Qiu, X. et al. Reducing Prenatal Phthalate Exposure Through Maternal Dietary Changes: Results from a Pilot Study. Matern Child Health J 19, 1936–1942 (2015). https://doi.org/10.1007/s10995-015-1707-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10995-015-1707-0

Keywords

Navigation