Skip to main content
Log in

Symmetric Categorial Grammar

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

The Lambek-Grishin calculus is a symmetric version of categorial grammar obtained by augmenting the standard inventory of type-forming operations (product and residual left and right division) with a dual family: coproduct, left and right difference. Interaction between these two families is provided by distributivity laws. These distributivity laws have pleasant invariance properties: stability of interpretations for the Curry-Howard derivational semantics, and structure-preservation at the syntactic end. The move to symmetry thus offers novel ways of reconciling the demands of natural language form and meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrusci, V. (1991). Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic. Journal of Symbolic Logic, 56, 1403–1451.

    Article  Google Scholar 

  2. Barker, C. (2002). Continuations and the nature of quantification. Natural Language Semantics, 10, 211–242.

    Article  Google Scholar 

  3. Barker, C. (2004). Continuations in natural language. In H. Thielecke (Ed.), CW’04: Proceedings of the 4th ACM SIGPLAN continuations workshop (pp. 1–11). Tech. Rep. CSR-04-1, School of Computer Science, University of Birmingham.

  4. Barker, C., & Shan, C. (2006). Types as graphs: Continuations in type logical grammar. Journal of Logic, Language and Information, 15(4), 331–370.

    Article  Google Scholar 

  5. Barker, C., & Shan, C. (2008). Donkey anaphora is in-scope binding. Semantics and Pragmatics, 1(1), 1–46.

    Google Scholar 

  6. Bastenhof, A. (2009). Continuations in natural language syntax and semantics. Utrecht University: MPhil Linguistics. Available at http://www.igitur.nl/studenttheses/index.php.

  7. Bernardi, R., & Moortgat, M. (2009). Continuation semantics for the Lambek-Grishin calculus. Information and Computation (to appear).

  8. Bimbó, K., & Dunn, J. M. (2008). Generalized Galois logics. Relational semantics of nonclassical logical calculi. Stanford: CSLI.

    Google Scholar 

  9. Bimbó, K., & Dunn, J. M. (2009). Symmetric generalized Galois logics. Logica Universalis, 3(1), 125–152.

    Article  Google Scholar 

  10. Boullier, P. (1999). Chinese numbers, MIX, scrambling, and range concatenation grammars. In Proceedings of the 9th EACL conference (pp. 53–60). Morristown: Association for Computational Linguistics.

    Google Scholar 

  11. Buszkowski, W. (1997). Mathematical linguistics and proof theory. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language (Chapter 12, pp. 683–736). Amsterdam: Elsevier/MIT.

    Chapter  Google Scholar 

  12. Casadio, C. (2001). Non-commutative linear logic in linguistics. Grammars, 4(3), 167–185.

    Article  Google Scholar 

  13. Castaño, J. (2004). Global index grammars and descriptive power. Journal of Logic, Language and Information, 13(4), 403–419.

    Article  Google Scholar 

  14. Cockett, C., & Seely, R. A. G. (1996). Proof theory for full intuitionistic linear logic, bilinear logic and mix categories. Theory and Applications of Categories, 3, 85–131.

    Google Scholar 

  15. Coen, C. S. (2006). Explanation in natural language of lambda-mu-comu terms. In Mathematical knowledge management, 4th international conference, MKM 2005, Bremen, Germany, 15–17 July 2005, revised selected papers. Lecture notes in computer science (Vol. 3863, pp. 234–249). New York: Springer.

    Google Scholar 

  16. Curien, P., & Herbelin, H. (2000). Duality of computation. In International conference on functional programming (ICFP’00) (pp. 233–243) (2005: corrected version).

  17. de Groote, P. (2001). Towards abstract categorial grammars. In Proceedings of 39th annual meeting of the association for computational linguistics, Toulouse, France (pp. 252–259). Morristown: Association for Computational Linguistics.

    Google Scholar 

  18. de Groote, P. (2001). Type raising, continuations, and classical logic. In M. S. R. van Rooy (Ed.), Proceedings of the thirteenth Amsterdam colloquium (pp. 97–101). Universiteit van Amsterdam: ILLC.

    Google Scholar 

  19. de Groote, P., & Lamarche, F. (2002). Classical non-associative Lambek calculus. Studia Logica, 71(3), 355–388.

    Article  Google Scholar 

  20. de Groote, P., & Pogodalla, S. (2004). On the expressive power of abstract categorial grammars: Representing context-free formalisms. Journal of Logic, Language and Information, 13(4), 421–438.

    Article  Google Scholar 

  21. de Paiva, V., & Ritter, E. (2006). A Parigot-style linear λ-calculus for full intuitionistic linear logic. Theory and Applications of Categories, 17(3), 30–48.

    Google Scholar 

  22. Dunn, J., & Hardegree, G. (2001). Algebraic methods in philosophical logic. Oxford: Oxford University Press.

    Google Scholar 

  23. Foret, A. (2003). On the computation of joins for non-associative Lambek categorial grammars. In J. Levy, M. Kohlhase, J. Niehren, & M. Villaret (Eds.), Proceedings of the 17th international workshop on unification, UNIF’03 Valencia (pp. 25–38).

  24. Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated lattices: An algebraic glimpse at substructural logics. Studies in logic and the foundations of mathematics (Vol. 151). Amsterdam: Elsevier.

    Google Scholar 

  25. Gehrke, M. (2006). Generalized Kripke frames. Studia Logica, 84(2), 241–275.

    Article  Google Scholar 

  26. Goré, R. (1997). Substructural logics on display. Logic Journal of IGPL, 6(3), 451–504.

    Article  Google Scholar 

  27. Grishin, V. (1983). On a generalization of the Ajdukiewicz-Lambek system. In A. Mikhailov (Ed.), Studies in nonclassical logics and formal systems, Moscow (pp. 315–334). Nauka (English translation in Abrusci & Casadio (Eds.), New perspectives in logic and formal linguistics. Bulzoni, Rome, 2002).

  28. Herbelin, H. (2005). C’est maintenant qu’on calcule: Au cœur de la dualité. Université Paris XI: Habilitation à diriger les recherches.

    Google Scholar 

  29. Kurtonina, N., & Moortgat, M. (2007). Relational semantics for the Lambek-Grishin calculus. In Proceedings MOL10, 10th conference on mathematics of language, Los Angeles. Available at http://molweb.org/mol10/.

  30. Lambek, J. (1958). The mathematics of sentence structure. American Mathematical Monthly, 65, 154–170.

    Article  Google Scholar 

  31. Lambek, J. (1961). On the calculus of syntactic types. In R. Jakobson (Ed.), Structure of language and its mathematical aspects (pp. 166–178). Providence: American Mathematical Society.

    Google Scholar 

  32. Lambek, J. (1993). From categorial to bilinear logic. In K. Došen & P. Schröder-Heister (Eds.), Substructural logics (pp. 207–237). Oxford: Oxford University Press.

    Google Scholar 

  33. Lambek, J. (2008). From word to sentence. A computational algebraic approach to grammar. Milano: Polimetrica.

    Google Scholar 

  34. Lengrand, S. (2003). Call-by-value, call-by-name, and strong normalization for the classical sequent calculus. In B. Gramlich & S. Lucas (Eds.), Post-proceedings of the 3rd international workshop on reduction strategies in rewriting and programming (WRS’03). Electronic notes in theoretical computer science (Vol. 86). Amsterdam: Elsevier.

    Google Scholar 

  35. Melissen, M. (2009). The generative capacity of the Lambek-Grishin calculus: A new lower bound. In P. de Groote (Ed.), Proceedings 14th conference on formal grammar. Lecture notes in computer science (Vol. 5591). New York: Springer.

    Google Scholar 

  36. Moortgat, M. (1996). Multimodal linguistic inference. Journal of Logic, Language and Information, 5(3), 349–385.

    Article  Google Scholar 

  37. Moortgat, M., & Pentus, M. (2007). Type similarity for the Lambek-Grishin calculus. In Proceedings 12th formal grammar conference. Dublin.

  38. Moot, R. (2007). Proof nets for display logic. CoRR, abs/0711.2444.

  39. Moot, R. (2008). Lambek grammars, tree adjoining grammars and hyperedge replacement grammars. In Proceedings of TAG+9, the 9th international workshop on tree adjoining grammars and related formalisms, Tübingen (pp. 65–72).

  40. Moot, R., & Puite, Q. (2002). Proof nets for the multimodal Lambek calculus. Studia Logica, 71(3), 415–442.

    Article  Google Scholar 

  41. Morrill, G., Leslie, N., Hepple, M., & Barry, G. (1990). Categorial deductions and structural operations. Studies in Categorial Grammar, Edinburgh Working Papers in Cognitive Science, 5, 1–21.

    Google Scholar 

  42. Morrill, G., Valentin, O., & Fadda, M. (2009). Dutch grammar and processing: A case study in TLG. In P. Bosch, D. Gabelaia, & J. Lang (Eds.), Logic, language, and computation: 7th international Tbilisi symposium on logic, language and computation, Tbilisi, Georgia, 1–5 October 2007. Revised selected papers, LNAI 5422 (pp. 272–286). New York: Springer.

    Google Scholar 

  43. Pentus, M. (1993). The conjoinability relation in Lambek calculus and linear logic. ILLC Prepublication Series ML–93–03, Institute for Logic, Language and Computation, University of Amsterdam.

  44. Retoré, C., & Salvati, S. (2007). Non-associative categorial grammars and abstract categorial grammars. In R. Muskens (Ed.), New directions in type theoretic grammars, Dublin (pp. 51–58).

  45. Shan, C. (2005). Linguistic side effects. Ph.D. thesis, Harvard University.

  46. Shieber, S., Schabes, Y., & Pereira, F. (1995). Principles and implementation of deductive parsing. The Journal of Logic Programming, 24(1–2), 3–36.

    Article  Google Scholar 

  47. van Benthem, J. (1983). The semantics of variety in categorial grammar. Technical Report 83-29, Simon Fraser University, Burnaby (B.C.) (Revised version in W. Buszkowski, W. Marciszewski, & J. van Benthem (Eds.), Categorial grammar, Benjamin, Amsterdam, 1988).

  48. van Benthem, J. (1986). Essays in logical semantics. Studies in linguistics and philosophy (Vol. 29). Dordrecht: Reidel.

    Google Scholar 

  49. van Benthem, J. (1995). Language in action: Categories, lambdas and dynamic logic. Cambridge: MIT.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Moortgat.

Additional information

In the early 1980s, Johan van Benthem’s work on the Lambek calculus lured me into categorial temptations: I have never regretted this. As for the symmetric developments, it was a pleasure to collaborate with Raffaella Bernardi, Natasha Kurtonina, and Mati Pentus on some of the results reported on here; Richard Moot and Philippe de Groote provided valuable feedback at different stages of the project. For comments on an earlier draft I thank Arno Bastenhof, Sylvain Pogodalla, Sylvain Salvati, and two anonymous reviewers. Remaining errors are my own.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moortgat, M. Symmetric Categorial Grammar. J Philos Logic 38, 681–710 (2009). https://doi.org/10.1007/s10992-009-9118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-009-9118-6

Keywords

Navigation