Skip to main content

Advertisement

Log in

T-Cell Epitopes Based Vaccine Candidate’s Prediction for Treatment Against Burkholderia pseudomallei: Causative Agent of Melioidosis

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Melioidosis is caused by the bacillus Burkholderia pseudomallei, this bacterium causes 165,000 new cases worldwide each year. Epitopes based vaccine a candidate of these bacterial species was identified by immunoinformatic study. Six epitopes VKAFRAAFAIPADVE, APVLIAVTAHTLTSK, GNPNFQAGDAARLIV, TLGAGINVDSTVGTS, LGAGINVDSTVGTSG, VKAFRAAFAIPADVE were linked to adjuvants, and linker molecules. Deep learning and artificial neural network tools were used to determine these epitopes, but structural prediction and validations shows multi-epitope vaccine was structurally and functionally sound. Molecular docking analysis shows interaction of multi-epitope vaccine and TLR-5 with ACE value of − 6.8 kcal/mol. Ramachandran plot shows greater than 97% amino acid residues are in allowed regions. The core objective of the current study is to craft multi-epitope vaccine against Burkholderia pseudomallei. This multi-epitope vaccine construct can be synthesised and validated by wet lab analysis in future studies, but in current study it shows good interaction patterns with TLR5 that will assist in its internalization. Here the validation of vaccine construct was conducted by simulation analysis that reveals stable interaction between ligand and receptor. Immunoinformatic studies not only save time but these methods were found to be economically beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akhtar N, Joshi A, Singh J, Kaushik V (2021) Design of a novel and potent multivalent epitope based human cytomegalovirus peptide vaccine: an immunoinformatics approach. J Mol Liq 335:116586

    Article  CAS  Google Scholar 

  • Bourdette DN, Edmonds E, Smith C, Bowen JD, Guttmann CR, Nagy ZP et al (2005) A highly immunogenic trivalent T cell receptor peptide vaccine for multiple sclerosis. Mult Scler J 11(5):552–561

    Article  CAS  Google Scholar 

  • Castelletto V, Kirkham S, Hamley IW, Kowalczyk R, Rabe M, Reza M, Ruokolainen J (2016) Self-assembly of the toll-like receptor agonist macrophage-activating lipopeptide MALP-2 and of its constituent peptide. Biomacromol 17(2):631–640

    Article  CAS  Google Scholar 

  • Cheng AC, Currie BJ (2005) Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18(2):383–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8(1):1–7

    Article  Google Scholar 

  • Eberl L, Vandamme P (2016) Members of the genus Burkholderia: good and bad guys. F1000 Res 5:1007

    Article  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: The proteomics protocols handbook. Springer, Berlin, pp 571–607.

  • Grote A, Hiller K, Scheer M, Münch R, Nörtemann B, Hempel DC, Jahn D (2005) JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res 33(2):W526–W531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Kumar A (2020) Designing an efficient multi-epitope vaccine against Campylobacter jejuni using immunoinformatics and reverse vaccinology approach. Microbial Pathogen 147:104398

    Article  CAS  Google Scholar 

  • Jain P, Joshi A, Akhtar N, Krishnan S, Kaushik V (2021) An immunoinformatics study: designing multivalent T-cell epitope vaccine against canine circovirus. J Genetic Eng Biotechnol 19(1):1–11. https://doi.org/10.1186/s43141-021-00220-4

    Article  Google Scholar 

  • Joshi A, Krishnan GS, Kaushik V (2020) Molecular docking and simulation investigation: effect of beta-sesquiphellandrene with ionic integration on SARS-CoV2 and SFTS viruses. J Genetic Eng Biotechnol 18(1):1–8. https://doi.org/10.1186/s43141-020-00095-x

    Article  Google Scholar 

  • Joshi A, Pathak DC, Mannan MAU, Kaushik V (2021) In-silico designing of epitope-based vaccine against the seven banded grouper nervous necrosis virus affecting fish species. Netw Model Anal Health Inf Bioinf 10(1):1–12. https://doi.org/10.1007/s13721-021-00315-5

    Article  CAS  Google Scholar 

  • Joshi A, Ray NM, Singh J, Upadhyay AK, Kaushik V (2022a) T-cell epitope-based vaccine designing against Orthohantavirus: a causative agent of deadly cardio-pulmonary disease. Netw Model Anal Health Inf Bioinf 11(1):1–10

    Article  Google Scholar 

  • Joshi A, Krishnan S, Kaushik V (2022b) Codon usage studies and epitope-based peptide vaccine prediction against Tropheryma whipplei. J Genetic Eng Biotechnol 20(1):1–12

    Article  Google Scholar 

  • Khakhum N, Tapia D, Torres AG (2019) Burkholderia mallei and glanders. In: Defense against biological attacks (pp. 161–183). Springer, Cham.

  • Knutson KL, Schiffman K, Disis ML (2001) Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Investig 107(4):477–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korber B, LaBute M, Yusim K (2006) Immunoinformatics comes of age. PLoS Comput Biol 2(6):e71

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Jain A, Verma SK (2013) Screening and structure-based modeling of T-cell epitopes of Marburg virus NP, GP and VP40: an immunoinformatic approach for designing peptide-based vaccine. Trends Bioinf 6(1):10

    Article  CAS  Google Scholar 

  • Limmathurotsakul D, Peacock SJ (2011) Melioidosis: a clinical overview. Br Med Bull 99(1):125–139

    Article  PubMed  Google Scholar 

  • Limmathurotsakul D, Golding N, Dance DA, Messina JP, Pigott DM, Moyes CL et al (2016) Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol 1(1):1–5

    Article  Google Scholar 

  • López JA, Weilenman C, Audran R, Roggero MA, Bonelo A, Tiercy JM et al (2001) A synthetic malaria vaccine elicits a potent CD8+ and CD4+ T lymphocyte immune response in humans. Implications for vaccination strategies. Eur J Immunol 31(7):1989–1998

    Article  PubMed  Google Scholar 

  • López-Blanco JR, Aliaga JI, Quintana-Ortí ES, Chacón P (2014) iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res 42(W1):W271–W276

    Article  PubMed  PubMed Central  Google Scholar 

  • McRobb E, Kaestli M, Price EP, Sarovich DS, Mayo M, Warner J, Spratt BG, Curriea BJ (2014) Distribution of Burkholderia pseudomallei in Northern Australia, a land of diversity. Appl Environ Microbiol 80:3463–3468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrovsky N, Brusic V (2002) Computational immunology: the coming of age. Immunol Cell Biol 80(3):248–254

    Article  PubMed  Google Scholar 

  • Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M (2020) Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. J Proteome Res 19(6):2304–2315

    Article  CAS  PubMed  Google Scholar 

  • Saraswat A, Shraddha JA, Pathak A, Verma SK, Kumar A (2012) Immuno-informatic speculation and computational modeling of novel MHC-II human leukocyte antigenic alleles to elicit vaccine for ebola virus. J Vaccines Vaccin 3(141):2

    Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucl Acids Res 33(2):W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Saxena K, Mishra S, Kumar A (2014) A comprehensive analysis of predicted HLA binding peptides of JE viral proteins specific to north Indian isolates. Bioinformation 10(6):334

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Kaur R, Upadhyay AK, Kaushik V (2020) In-silico prediction of peptide based vaccine against Zika virus. Int J Pept Res Ther 26(1):85–91

    Article  CAS  Google Scholar 

  • Sharma P, Sharma P, Kumar A (2021) Top down computational approach: a vaccine development step to find novel superantigenic HLA binding epitopes from dengue virus proteome. Int J Pept Res Ther 27(2):1469–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunil Krishnan G, Joshi A, Kaushik V (2021) Bioinformatics in personalized medicine. In: Advances in bioinformatics. Springer, Singapore, pp 303–315

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(2):W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiersinga WJ, Virk HS, Torres AG, Currie BJ, Peacock SJ, Dance DA, Limmathurotsakul D (2018) Melioidosis. Nat Rev Disease Primers 4(1):1–22

    Google Scholar 

  • Williams CJ, Headd JJ, Moriarty NW, Prisant MG, Videau LL, Deis LN et al (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27(1):293–315

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Mcpartlon M, Li J (2021) Improved protein structure prediction by deep learning irrespective of co-evolution information. Nat Mach Intell 3(7):601–609

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge computational services and sound supervision provided throughout the research work by the Department of Biotechnology, Rama University Uttar Pradesh, Kanpur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

The author’s confirm that authors did not perform any experiments on human or animals as it is purely an in-silico study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, K., Kumar, A. T-Cell Epitopes Based Vaccine Candidate’s Prediction for Treatment Against Burkholderia pseudomallei: Causative Agent of Melioidosis. Int J Pept Res Ther 28, 90 (2022). https://doi.org/10.1007/s10989-022-10400-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10989-022-10400-6

Keywords

Navigation