Skip to main content

Advertisement

Log in

Production of Soluble Bioactive NmDef02 Plant Defensin in Escherichia coli

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Antibiotic resistance.is one of the biggest challenges sciences faces today. It is extremely urgent to develop new antimicrobial compounds to control infections in the "post-antibiotic era”. Plant defensins belong to a large family of small cationic antimicrobial peptides and are an integral part of the innate immune system of plants. The gene coding for the mature peptide NmDef02 (isolated from Nicotiana megalosiphon) was cloned into a pSMT3 vector, generating the plasmid pSMT3-DEF02, used to express the protein SUMO-NmDef02 in Escherichia coli, strain Shuffle T7 Express lysY. The soluble chimeric protein was purified by Ni–NTA affinity chromatography and cleaved by the UPL1 protease. The sample was re-applied to a Ni–NTA and approximately 20 mg of NmDef02 was obtained from the fermentation of 1 L of E. coli culture. The purified proteins were analyzed by SDS-PAGE under reduction condition and its identity was confirmed by Western blotting, using anti-histidine and anti-NmDef02 antibodies. NmDef02 defensin showed antimicrobial activity against plant and human pathogens. The recombinant fusion strategy could be an approach to produce bioactive recombinant NmDef02.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

Code Availability

Not applicable.

References

  • Ab Hamid NA (2018) Production of novel antimicrobial peptide human beta defensin 9 and its efficacy against common eye pathogenic bacteria in different salt concentration. Masters thesis, Universiti Putra Malaysia.

  • Almeida MS, Cabral KM, Zingali RB, Kurtenbach E (2000) Characterization of two novel defense peptides from pea (Pisum sativum) seeds. Arch Biochem Biophys 378:278–286

    Article  CAS  PubMed  Google Scholar 

  • Browne K, Chakraborty S, Chen R, Willcox MD, Black DS, Walsh WR, Kumar N (2020) A new era of antibiotics: The clinical potential of antimicrobial peptides. Int J Mol Sci 21:7047

    Article  CAS  PubMed Central  Google Scholar 

  • Carvalho Ade O, Gomes VM (2011) Plant defensins and defensin-like peptides - biological activities and biotechnological applications. Curr Pharm Des 17:4270–4293

    Article  PubMed  Google Scholar 

  • Chen X, Shi J, Chen R, Wen Y, Shi Y, Zhu Z, Guo S, Li L (2015) Molecular chaperones (TrxA, SUMO, Intein, and GST) mediating expression, purification, and antimicrobial activity assays of plectasin in Escherichia coli. Biotechnol Appl Biochem 62:606–614

    Article  CAS  PubMed  Google Scholar 

  • Chen QC, Liu L, Yu TY, Tang L, Yin ML, Zhu WH, Jiang XY, Wang HY (2021) High-level expression and purification of melittin in Escherichia coli using SUMO fusion partner. Int J Pept Res Ther 27:9–15

    Article  CAS  Google Scholar 

  • Datta S, Roy A (2021) Antimicrobial peptides as potential therapeutic agents: a review. Int J Pept Res Ther 27:555–577

    Article  CAS  Google Scholar 

  • Elmore ZC, Donaher M, Matson BC, Murphy H, Westerbeck JW, Kerscher O (2011) Sumo-dependent substrate targeting of the SUMO protease Ulp1. BMC Biol 9:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Y, Zhu Q, Huang D, Zhao S, Lo LJ, Peng J (2015) An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide. Sci Rep 5:1–11

    Article  CAS  Google Scholar 

  • Guo K, Yang X, Zhang H, Zhao Y, Zheng H, Yang M, Chen H (2018) Cloning of PBD1 gene and its expression in Escherichia coli. Journal of Agricultural Biotechnology 26:635–641

    Google Scholar 

  • Hayes BM, Bleackley MR, Wiltshire JL, Anderson MA, Traven A, Van Der Weerden NL (2013) Identification and mechanism of action of the plant defensin NaD1 as a new member of the antifungal drug arsenal against Candida albicans. Antimicrob Agents Chemother 57:3667–3675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes BME, Bleackley MR, Anderson MA, Van Der Weerden NL (2018) The plant defensin NaD1 enters the cytoplasm of Candida Albicans via Endocytosis. J Fungi (basel) 4:20

    Article  Google Scholar 

  • Huang L, Wang J, Zhong Z, Peng L, Chen H, Xu Z, Cen P (2006) Production of bioactive human beta-defensin-3 in Escherichia coli by soluble fusion expression. Biotechnol Lett 28:627–632

    Article  CAS  PubMed  Google Scholar 

  • Ki M-R, Pack SP (2020) Fusion tags to enhance heterologous protein expression. Appl Microbiol Biotechnol 104:2411–2425

    Article  CAS  PubMed  Google Scholar 

  • Kuo D, Nie M, Courey AJ (2014) SUMO as a solubility tag and in vivo cleavage of SUMO fusion proteins with Ulp1. Methods Mol Biol 1177:71–80

    Article  CAS  PubMed  Google Scholar 

  • Lacerda AF, Vasconcelos EA, Pelegrini PB, Grossi De Sa MF (2014) Antifungal defensins and their role in plant defense. Front Microbiol 5:116

    Article  PubMed  PubMed Central  Google Scholar 

  • Lay FT, Ryan GF, Caria S, Phan TK, Veneer PK, White JA, Kvansakul M, Hulett MD (2019) Structural and functional characterization of the membrane-permeabilizing activity of Nicotiana occidentalis defensin NoD173 and protein engineering to enhance oncolysis. FASEB J 33:6470–6482

    Article  CAS  PubMed  Google Scholar 

  • Lehrer RI, Rosenman M, Harwig SS, Jackson R, Eisenhauer P (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. J Immunol Methods 137:167–173

    Article  CAS  PubMed  Google Scholar 

  • Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80:260–267

    Article  CAS  PubMed  Google Scholar 

  • Li JF, Zhang J, Zhang Z, Ma HW, Zhang JX, Zhang SQ (2010) Production of bioactive human beta-defensin-4 in Escherichia coli using SUMO fusion partner. Protein J 29:314–319

    Article  CAS  PubMed  Google Scholar 

  • Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 11:1–16

    Article  Google Scholar 

  • Luan C, Xie YG, Pu YT, Zhang HW, Han FF, Feng J, Wang YZ (2014) Recombinant expression of antimicrobial peptides using a novel self-cleaving aggregation tag in Escherichia coli. Can J Microbiol 60:113–120

    Article  CAS  PubMed  Google Scholar 

  • Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics 5:75–86

    Article  CAS  PubMed  Google Scholar 

  • Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mello EO, Ribeiro SF, Carvalho AO, Santos IS, Da Cunha M, Santa-Catarina C, Gomes VM (2011) Antifungal activity of Pv D1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr Microbiol 62:1209–1217

    Article  CAS  PubMed  Google Scholar 

  • Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ (2020) Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 19:311–332

    Article  CAS  PubMed  Google Scholar 

  • Moyer TB, Purvis AL, Wommack AJ, Hicks LM (2021) Proteomic response of Escherichia coli to a membrane lytic and iron chelating truncated Amaranthus tricolor defensin. BMC Microbiol 21:1–12

    Article  Google Scholar 

  • Pacheco-Cano RD, Salcedo-Hernández R, Casados-Vázquez LE, Wrobel K, Bideshi DK, Barboza-Corona JE (2020) Class I defensins (BraDef) from broccoli (Brassica oleracea var. italica) seeds and their antimicrobial activity. World J Microbiol Biotechnol 36:1–12

    Article  Google Scholar 

  • Pérez-Bernal M, Delgado M, Cruz A, Abreu D, Valdivia O, Armas R (2017) Marker-free transgenic rice lines with a defensin gene are potentially active against phytopathogenic fungus Sarocladium oryzae. Acta Phytopathologica Et Entomologica Hungarica 52:135–144

    Article  Google Scholar 

  • Picart P, Pirttila AM, Raventos D, Kristensen HH, Sahl HG (2012) Identification of defensin-encoding genes of Picea glauca: characterization of PgD5, a conserved spruce defensin with strong antifungal activity. BMC Plant Biol 12:180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon I, Baxter AA, Lay FT, Mills GD, Adda CG, Payne JA, Phan TK, Ryan GF, White JA, Veneer PK, Van Der Weerden NL, Anderson MA, Kvansakul M, Hulett MD (2014) Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. Elife 3:e01808

    Article  PubMed  PubMed Central  Google Scholar 

  • Portieles R, Ayra C, Gonzalez E, Gallo A, Rodriguez R, Chacón O, López Y, Rodriguez M, Castillo J, Pujol M (2010) NmDef02, a novel antimicrobial gene isolated from Nicotiana megalosiphon confers high-level pathogen resistance under greenhouse and field conditions. Plant Biotechnol J 8:678–690

    Article  CAS  PubMed  Google Scholar 

  • Portieles R, Borrás O, Ayra C, González EM, Castillo J, Trujillo LE, Chacón O, Rodríguez M, López Y, Rodrígues R (2011) High level resistance to phytopathogenic fungi and oomycetes conferred by the use of a novel anti-microbial peptide. Biotecnología Aplicada 28:262–264

    Google Scholar 

  • Roberts WK, Selitrennikoff CP (1986) Isolation and partial characterization of two antifungal proteins from barley. Biochem Biophys Acta 880:161–170

    Article  CAS  PubMed  Google Scholar 

  • Sagaram US, Pandurangi R, Kaur J, Smith TJ, Shah DM (2011) Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS ONE 6:e18550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaio De Oliveira KB, Leite ML, Rodrigues GR, Duque HM, Da Costa RA, Cunha VA, De Loiola Costa LS, Da Cunha NB, Franco OL, Dias SC (2020) Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 13:367–390

    Article  CAS  PubMed  Google Scholar 

  • Sathoff AE, Samac DA (2019) Antibacterial activity of plant defensins. Mol Plant Microbe Interact 32:507–514

    Article  CAS  PubMed  Google Scholar 

  • Sathoff AE, Velivelli S, Shah DM, Samac DA (2019) Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens. Phytopathology 109:402–408

    Article  CAS  PubMed  Google Scholar 

  • Sathoff AE, Lewenza S, Samac DA (2020) Plant defensin antibacterial mode of action against Pseudomonas species. BMC Microbiol 20:173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sher Khan R, Iqbal A, Malak R, Shehryar K, Attia S, Ahmed T, Ali Khan M, Arif M, Mii M (2019) Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. 3 Biotech 9:192

    Article  PubMed  PubMed Central  Google Scholar 

  • Soto N, Hernández Y, Delgado C, Rosabal Y, Ortiz R, Valencia L, Borrás-Hidalgo O, Pujol M, Enríquez GA (2020) Field Resistance to Phakopsora pachyrhizi and Colletotrichum truncatum of Transgenic Soybean Expressing the NmDef02 Plant Defensin Gene. Front Plant Sci 11:562

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan MS, Teh YH, Ho KL, Stanslas J (2020) An application of pET SUMO protein expression system in Escherichia coli: cloning, expression, purification, and characterisation of native Kras 4B(G12V) Oncoprotein. Protein J 39:54–61

    Article  CAS  PubMed  Google Scholar 

  • Wibowo D, Zhao CX (2019) Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl Microbiol Biotechnol 103:659–671

    Article  CAS  PubMed  Google Scholar 

  • Yadav SK, Magre I, Singh A, Khuperkar D, Joseph J (2016) Regulation of aPKC activity by Nup358 dependent SUMO modification. Sci Rep 6:1–10

    Article  Google Scholar 

  • Yang J, Zhang Y (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43:W174–W181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Qiu Z, Li Y, Yang Y, Zhang Q, Xiang Q, Su Z, Huang Y (2013) Construction and characterization of a recombinant human beta defensin 2 fusion protein targeting the epidermal growth factor receptor: in vitro study. Appl Microbiol Biotechnol 97:3913–3923

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Freddolino PL, Zhang Y (2017) COFACTOR: improved protein function prediction by combining structure, sequence and protein–protein interaction information. Nucleic Acids Res 45:W291–W299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by Center for Genetic Engineering and Biotechnology of Cuba (CIGB).

Author information

Authors and Affiliations

Authors

Contributions

YC and CG performed the experiments. KT. analyzed the data. LL writing, review and editing. SP performed microbiology assay. AL and AH supervision. The first two authors had equal participation in the work. All authors collaborated in the drafting of the article and approved the final version.

Corresponding author

Correspondence to Alina Lopez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 110 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceballo, Y., Gonzalez, C., Ramos, O. et al. Production of Soluble Bioactive NmDef02 Plant Defensin in Escherichia coli. Int J Pept Res Ther 28, 26 (2022). https://doi.org/10.1007/s10989-021-10338-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10989-021-10338-1

Keywords

Navigation