Skip to main content

Advertisement

Log in

Inhibition of Methicillin Resistant Staphylococcus aureus by Bacteriocin Producing Pseudomonas aeruginosa

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Bacteriocins are natural antimicrobial peptides with attractive possible applications in food preservation and health care. In the present study, bacteriocin producing bacterial strain Pseudomonas aeruginosa were isolated from soil which exhibited antagonistic activity against Methicillin Resistant Staphylococcus aureus (MRSA) bacteria. The bacteriocin producing strain TA6 was confirmed as P. aeruginosa by biochemical tests and 16S rRNA gene sequence analysis. Maximum bacteriocin activity (100 AU ml−1) was observed at 37 °C with pH 6.0 in 24 h time duration. SDS–PAGE analysis of the extracellular protein of P. aeruginosa TA6 revealed a bacteriocin-like protein with a molecular mass of ~10 kDa. MRSA cells were treated with culture supernatant of P. aeruginosa TA6 and analyzed by FT-IR. The treated and untreated MRSA showed band variations at 671 and 3460 cm−1 corresponding to alkyl and amide group respectively. Mixed proportions of dead and live control populations were analyzed by flow cytometry to determine detection limits of the Dead/Live cells. The flow cytometry detection of defined proportions of dead (p2) and live (p1) cells at 3 h were p2 = 60.5%; p1 = 39.5% and 6 h p2 = 66.5%; p1 = 33.5% respectively. The scanning electron microscopy observation showed the main changes in the cell membrane structural integrity of S. aureus after exposure to the bacteriocin from P. aeruginosa TA6 at 12 h incubation. Together, the results suggested that bacteriocin from P. aeruginosa TA6 was effective against MRSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baggett HC, Hennessy TW, Leman R, Hamlin C, Bruden D, Reasonover A (2003) An outbreak of community-onset methicillin-resistant Staphylococcus aureus skin infections in southwestern Alaska. Infect Control Hosp Epidemiol 24:397–402

    Article  PubMed  Google Scholar 

  • Bartoloni A, Bartalesi F, Mantella A, Dell’Amico E, Roselli M, Strohmeyer M (2004) High prevalence of acquired antimicrobial resistance unrelated to heavy antimicrobial consumption. J Infect Dis 189:1291–1294

    Article  CAS  PubMed  Google Scholar 

  • Bhunia AK, Johnson MC, Ray B (1987) Direct detection of an antimicrobial peptide of Pediococcus acidilactici in sodium dodecyl sulphate-polyacrylamide gel electrophoresis. J Ind Microbiol 2:319–322

    Article  CAS  Google Scholar 

  • Brotz H, Josten M, Wiedemann I, Schneider U, Gotz F, Bierbaum G (1998) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30:317–327

    Article  CAS  PubMed  Google Scholar 

  • Church D, Elsayed S, Reid O, Winston B, Lindsay R (2006) Burn wound infections. Clin Microbiol Rev 19:403–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Cosgrove SE, Carmeli Y (2003) The impact of antimicrobial resistance on health and economic outcomes. Clin Infect Dis 36:1433–1437

    Article  PubMed  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nature Rev Microbiol 3:777–788

    Article  CAS  Google Scholar 

  • Daum RS (2007) Skin and soft-tissue infections caused by methicillinresistant Staphylococcus aureus. N Engl J Med 357:380–390

    Article  CAS  PubMed  Google Scholar 

  • de Jong A, van Hijum SAFT., Bijlsma JJE, Kok J, Kuipers OP (2006) BAGEL: a web-based bacteriocin genome mining tool. Nucleic Acids Res 34:273–279

    Article  CAS  Google Scholar 

  • Fialkov JA, Holy C, Forrest CR, Phillip JH, Antonyshyn OM (2001) Postoperative infections in craniofacial reconstructive procedures. J Craniofac Surg 12:362–368

    Article  CAS  PubMed  Google Scholar 

  • Fridkin SK, Hageman JC, Morrison M, Sanza LT, Como Sabetti K, Jernigan JA (2005) Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 352:1436–1444

    Article  CAS  PubMed  Google Scholar 

  • Gratia A (1925) Sur un remarquable exemple d’antagonisme entre deux souches de coilbacille. Comp Rend Soc Biol 93:1040–1041

    Google Scholar 

  • Heng NCK, Wescombe PA, Burton JP, Jack RW, Tagg JR (2007) The diversity of bacteriocins in Gram-positive bacteria. In: Riley MA, Chavan M (eds) Bacteriocins: ecology and evolution. Springer, Berlin, pp 45–92

    Chapter  Google Scholar 

  • Kirkup BC (2006) Bacteriocins as oral and gastrointestinal antibiotics: theoretical considerations, applied research, and practical applications. Curr Med Chem 13:335–3350

    Article  Google Scholar 

  • Krishnan V, Johnson JV, Helfrick JF (1993) Management of maxillofacial infections: a review of 50 cases. J Oral Maxillofac Surg 51:868–873

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) Mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Mathur H, Field D, Rea MC, Cotter PD, Hill C, Ross RP (2017) Bacteriocin-antimicrobial synergy: a medical and food perspective. Front Microbiol 8:1205

    Article  PubMed  PubMed Central  Google Scholar 

  • McDougall PP, Shane S, Oviatt BM (1994) Explaining the formation of international new ventures: the limits of theories from international business research. J Bus Ventur 9(6):469–487

    Article  Google Scholar 

  • Meyer J, Rogne P, Opegard C, Haugen H, Kristiansen P (2009) Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol 10:19–37

    Article  Google Scholar 

  • Motta AS, Brandelli A (2008) Evaluation of environmental conditions for production of bacteriocin-like substance by Bacillus sp. strain P34. World J Micro Biotech 24:641–646

    Article  CAS  Google Scholar 

  • Naz SA, Jabeen N, Sohail M, Rasool SA (2015) Biophysicochemical characterization of Pyocin SA 189 Produced by Pseudomonas aeroginosa SA189. Braz J Micro 46 (4):1147–1154

    Article  CAS  Google Scholar 

  • Okesola AO (2011) Community-acquired methicillin-resistant Staphylococcus aureus - a review of literature. Afr J Med Sci 40:97–107

    CAS  Google Scholar 

  • Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padilla C, Lobos O, Brevis P (2002) Effect of the bacteriocin PsVP- 10 produced by Pseudomonas sp. On sensitive bacterial strains. De Microbiologia 44:19–23

    Google Scholar 

  • Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotech Adv 21:465–499

    Article  CAS  Google Scholar 

  • Piper C, Hill C, Cotter PD, Ross RP (2011) Bioengineering of a nisin A-producing Lactococcus lactis to create isogenic strains producing the natural variants nisin F, Q, and Z. Microb Biotech 4:375–382

    Article  CAS  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117–137

    Article  CAS  PubMed  Google Scholar 

  • Rubiee R, Mudhaffar S, Hassan F (1988) Purification and characterization of pyocins from Pseudomonas aeroginosa. Folia Microbiol 30:25–29

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Saleem F, Ahmed S, Yaqoob Z (2009) Comparative study of two bacteriocins produced by representative indigenous soil bacteria. Pak J Pharma Sci 22:252–258

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Nova York

    Google Scholar 

  • Sano Y, Kageyama M (1981) Purification and properties of an S-type pyocin, Pyocin AP41. J Bacteriol 146:733–739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379

    Article  CAS  PubMed  Google Scholar 

  • Severina E, Severin A, Tomasz A (1998) Antibacterial efficacy of nisin against multidrug-resistant Gram-positive pathogens. J Antimicrob Chemother 41:341–347

    Article  CAS  PubMed  Google Scholar 

  • Shand RF, Leyva KJ (2008) Archaeal antimicrobials: an undiscovered country. In: Blum P (ed) Archaea: new models for prokaryotic biology. Caister Academic, Norfolk, pp 233–242

  • Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of Gram-positive bacteria. Bacteriol Rev 40:722–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toba T, Yoshioka E, Itoh T (1991) Potential of Lactobacillus gasseri isolated from infant faeces to produce bacteriocin. Lett Appl Microbio 12:228–231

    Article  Google Scholar 

  • Vindenes H, Bjerknes R (1995) Microbial colonization of large wounds. Burns 21:575–579

    Article  CAS  PubMed  Google Scholar 

  • Williams I, Paul F, Lloyd D, Jepras R, Critchley I, Newman M (1999) Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture. Microbiology 145:1325–1333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Science and Technology, New Delhi for providing financial supports under DST-WOS-A start of grant for (DST/SR/WOS- A/LS-629/2012(G)), Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagarajan Kayalvizhi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arumugam, T., Dhanam, S., Rameshkumar, N. et al. Inhibition of Methicillin Resistant Staphylococcus aureus by Bacteriocin Producing Pseudomonas aeruginosa. Int J Pept Res Ther 25, 339–348 (2019). https://doi.org/10.1007/s10989-018-9676-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-018-9676-y

Keywords

Navigation