Skip to main content
Log in

Trypsin Hydrolysed Protein Fractions as Radical Scavengers and Anti-bacterial Agents from Ficus deltoidea

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Different molecular sizes of protein hydrolysates were prepared from the crude protein extract of Ficus deltoidea using the technique of membrane ultrafiltration after trypsin hydrolysis. Gel electrophoretic images shows the presence of 12, 8, 7 and 7 protein bands for the protein fractions prepared from the molecular weight cut-off of 3, 10, 30 and 100 kDa, respectively. The protein hydrolysates were found to have higher radical scavenging activity than those unhydrolysed fractions at the similar molecular size. They exhibited significant differences in the radical scavenging activities based on one-way analysis of variance, except for the protein hydrolysates of 30 and 100 kDa. The smallest protein hydrolysates, 3 kDa appeared to have the comparable activity (30%) with bovine serum albumin as a positive control in this study. Similarly, the 3 kDa protein hydrolysates achieved the highest inhibitory activity (87.5%) against Pseudomonas aeruginosa at the concentration of 128 µg/mL. The protein hydrolysates were found to be more effective against gram negative bacteria (P. aeruginosa and Escherichia coli) because of lower minimum inhibitory concentration (MIC) and effective inhibitory concentration at 50% (EC50) than gram positive bacterium (Staphylococcus aureus). Trypsin catalysed hydrolysis seemed to improve the anti-bacterial activity of protein hydrolysates in a bacterial strain dependent manner. The MIC could achieve 1–55 µg/mL at different molecular sizes of protein fractions. Mass spectra matching revealed that 26% of 226 identified proteins belonged to the category of plant defensive proteins in stress management and metal handling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ajibola CF, Fashakin JB, Fagbemi TN, Aluko RE (2011) Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. Int J Mol Sci 12:6685–6702. doi:10.3390/ijms12106685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aluko R, Monu E (2003) Functional and bioactive properties of quinoa seed protein hydrolysates. J Food Sci 68:1254–1258

    Article  CAS  Google Scholar 

  • Barbosa Pelegrini P, Del Sarto RP, Silva ON, Franco OL, Grossi-De-Sa MF (2011) Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int. doi:10.1155/2011/250349

    PubMed  PubMed Central  Google Scholar 

  • Beaulieu L, Bondu S, Doiron K, Rioux L, Turgeon SL (2015) Characterization of antibacterial activity from protein hydrolysates of the macroalga Saccharina longicruris and identification of peptides implied in bioactivity. J Funct Foods 17:685–697. doi:10.1016/j.jff.2015.06.026

    Article  CAS  Google Scholar 

  • Bing S, Zhang ZÆ, Shi WÆ, Xu Y (2009) Purification and characterization of a radical scavenging peptide from rapeseed protein hydrolysates. J Am Oil Chem Soc 86:959–966. doi:10.1007/s11746-009-1404-5

    Article  Google Scholar 

  • Bio-Rad (2012) A guide to polyacrylamide gel electrophoresis and detection. http://www.bio-rad.com/webroot/web/pdf/lsr/literature/Bulletin_6040.pdf. Accessed 13 June 2016

  • Blum R, Beck A, Korte A, Stengel A, Letzel T, Lendzian K, Grill E (2007) Function of phytochelatin synthase in catabolism of glutathione-conjugates. Plant J 49:740–749

    Article  CAS  PubMed  Google Scholar 

  • Bojórquez-Balam E, Ruiz Ruiz J, Segura-Campos M, Betancur Ancona D, Chel Guerrero L (2013) Evaluación de la capacidad antimicrobiana de fracciones peptídicas de hidrolizados proteínicos de frijol lima (Phaseolus lunatus). In: Segura Campos En M, Chel Guerrero L, Betancur Ancona D (eds) Bioactividad de péptidos derivados de proteínas alimentarias, chap 6. OmniaScience, Barcelona, pp 139–154

    Chapter  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chua LS, Hidayathulla S (2017) Phytochemical profile of fresh and senescent leaves due to storage for Ficus deltoidea. Plant Biosyst 151:74–83

    Google Scholar 

  • Chua LS, Nurulaini AR, Moahamad Roji S (2014) Plant protein extraction and identification from Eurycoma longifolia by gel electrophoresis and mass spectrometry. Curr Proteomics 11:161–170

    Article  CAS  Google Scholar 

  • Clemente A (2000) Enzymatic protein hydrolysates in human nutrition. Trends Food Sci Technol 11:254–262

    Article  CAS  Google Scholar 

  • Cumby N, Zhong Y, Naczk M, Shahidi F (2008) Food chemistry antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chem 109:144–148. doi:10.1016/j.foodchem.2007.12.039

    Article  CAS  PubMed  Google Scholar 

  • Daly NL, Koltay a, Gustafson KR, Boyd MR, Casas-Finet JR, Craik DJ (1999) Solution structure by NMR of circulin A: a macrocyclic knotted peptide having anti-HIV activity. J Mol Biol 285:333–345. doi:10.1006/jmbi.1998.2276

    Article  CAS  PubMed  Google Scholar 

  • De Assis MC, Saliba AM, Vidipó LA, De Salles JB, Plotkowski MC (2004) Pseudomonas aeruginosa-induced production of free radicals by IFNgamma plus TNFalpha-activated human endothelial cells: mechanism of host defense or of bacterial pathogenesis? Immunol Cell Biol 82:383–392. doi:10.1111/j.0818-9641.2004.01249.x

    Article  PubMed  Google Scholar 

  • De Abreu-Neto JB, Turchetto-Zolet AC, De Oliveira LFV, Bodanese Zanettini MH, Margis-Pinheiro M (2013) Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J 280:1604–1616. doi:10.1111/febs.12159

    Article  PubMed  Google Scholar 

  • Domı H, Parajo JC (2006) Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem 41:447–456. doi:10.1016/j.procbio.2005.07.014

    Article  Google Scholar 

  • Farsi E, Shafaei A, Hor SY, Ahamed MBK, Fei M, Attitalla IH, Asmawi MZ, Ismail Z (2011) Correlation between enzymes inhibitory effects and antioxidant activities of standardized fractions of methanolic extract obtained from Ficus deltoidea leaves. Afr J Biotechnol 10:15184–15194. doi:10.5897/AJB11.1365

    Article  CAS  Google Scholar 

  • Girgih AT, Udenigwe CC, Aluko RE (2011) In vitro antioxidant properties of hemp seed (Cannabis sativa L.) protein hydrolysate fractions. J Am Oil Chem Soc 88:381–389. doi:10.1007/s11746-010-1686-7

    Article  CAS  Google Scholar 

  • Hakiman M, Maziah M (2009) Non enzymatic and enzymatic antioxidant activities in aqueous extract of different Ficus deltoidea accessions. J Med Plants Res 3:120–131

    Google Scholar 

  • Hammami R, Ben Hamida J, Vergoten G, Fliss I (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37:963–968. doi:10.1093/nar/gkn655

    Article  Google Scholar 

  • Isaacson T, Damasceno CMB, Saravanan RS, He Y, Catalá C, Saladié M, Rose JKC (2006) Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc 1:769–774

    Article  CAS  PubMed  Google Scholar 

  • Jeon Y, Byun H, Kim S (1999) Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochem 35:471–478

    Article  Google Scholar 

  • Jiménez CR, Huang L, Qiu Y, Burlingame AL (2001) Searching sequence databases over the internet: protein identification using MS‐Fit. In: Chiu M, Coligan JE, Dunn BM, Speicher DW, Wingfiled PT, Ploegh HL (eds) Current protocols in protein science, chap 16, unit 16.5. Wiley, USA, pp 15–16

  • Korhonen H (2009) Milk-derived bioactive peptides: from science to applications. J Funct Foods 1:177–187. doi:10.1016/j.jff.2009.01.007

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Wendy W, Yong Fu Siong J, Syamsumir DF (2011) Characterization of antioxidant, antimicrobial, anticancer property and chemical composition of Ficus deltoidea Jack. Leaf extract. J Biol Act Prod from Nat 1:1–6. doi:10.1080/22311866.2011.10719067

    Google Scholar 

  • Liu B, Chiang P (2008) Production of hydrolysate with antioxidative activity and functional properties by enzymatic hydrolysis of defatted sesame (Sesamum indicum L.). Int J Appl Sci Eng 6:73–83

    Google Scholar 

  • Mensor LL, Menezes FS, Leitão GG, Reis AS, Santos TC dos, Coube CS, Leitão SG (2001) Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytother Res 15:127–130

    Article  CAS  PubMed  Google Scholar 

  • Misbah H, Aziz A, Aminudin N (2013) Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complement Altern Med 13:118. doi:10.1186/1472-6882-13-118

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittal R, Sharma S, Chhibber S, Harjai K (2008) Contribution of free radicals to Pseudomonas aeruginosa induced acute pyelonephritis. Microb Pathog 45:323–330. doi:10.1016/j.micpath.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  • Mota MVT, Ferreira IMPLVO, Oliveira MBP, Rocha C, Teixeira JA, Torres D, Goncalves MD (2006) Trypsin hydrolysis of whey protein concentrates: characterization using multivariate data analysis. Food Chem 94:278–286. doi:10.1016/j.foodchem.2005.01.016

    Article  CAS  Google Scholar 

  • Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Goździcka-Józefiak A (2014) Plant antimicrobial peptides. Folia Microbiol 59:181–196. doi:10.1007/s12223-013-0280-4

    Article  CAS  Google Scholar 

  • Ngoh YY, Gan CY (2016) Enzyme-assisted extraction and identification of antioxidant and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris Cv. Pinto). Food Chem 190:331–337. doi:10.1016/j.foodchem.2015.05.120

    Article  CAS  PubMed  Google Scholar 

  • Park IY, Cho JH, Kim KS, Kim YB, Kim MS, Kim SC (2004) Helix stability confers salt resistance upon helical antimicrobial peptides. J Biol Chem 279:13896–13901. doi:10.1074/jbc.M311418200

    Article  CAS  PubMed  Google Scholar 

  • Pownall TRL, Udenigwe CHC, Aluko ROE (2010) Amino acid composition and antioxidant properties of pea seed (Pisum sativum L.) enzymatic protein hydrolysate fractions. J Agric Food Chem 58:4712–4718. doi:10.1021/jf904456r

    Article  CAS  PubMed  Google Scholar 

  • Ramamurthy S, Kumarappan C, Dharmalingam SR, Sangeh JK (2014) Phytochemical, pharmacological and toxicological properties of Ficus deltoidea: a review of a recent research. Annu Res Rev Biol 4:2357

    Article  Google Scholar 

  • Ramšak Ž, Baebler Š, Rotter A, Korbar M, Mozetič I, Usadel B, Gruden K (2014) GoMapMan: Integration, consolidation and visualization of plant gene annotations within the MapMan ontology. Nucleic Acids Res 42:1167–1175. doi:10.1093/nar/gkt1056

    Article  Google Scholar 

  • Saboki E, Usha K, Singh B (2011) Pathogenesis related (PR) proteins in plant defense mechanism age-related pathogen resistance. Curr Res Technol Adv 2:1043–1054

    Google Scholar 

  • Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  PubMed  Google Scholar 

  • Silverstein KAT, Graham MA, Paape TD, Vandenbosch KA (2005) Genome organization of more than 300 defensin-like genes in Arabidopsis 1. Genome Anal 138:600–610. doi:10.1104/pp.105.060079.600

    CAS  Google Scholar 

  • Sitaram N, Nagaraj R (1999) Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta 1462:29–54. doi:10.1016/S0005-2736(99)00199-6

    Article  CAS  PubMed  Google Scholar 

  • Suryati S, Nurdin H, Dachriyanus D, Lajis MN (2011) Structure elucidation of antibacterial compound from Ficus deltoidea, Jack leaves. Indones J Chem 11:67–70

    Google Scholar 

  • Tang C, Peng J, Zhen D, Chen Z (2009a) Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates. Food Chem 115:672–678. doi:10.1016/j.foodchem.2008.12.068

    Article  CAS  Google Scholar 

  • Tang C, Wang X, Yang X (2009b) Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of the resulting hydrolysates. Food Chem 114:1484–1490. doi:10.1016/j.foodchem.2008.11.049

    Article  CAS  Google Scholar 

  • Tang X, He Z, Dai Y, Xiong YL, Xie M, Chen J (2010) Peptide fractionation and free radical scavenging activity of zein hydrolysate. J Agric Food Chem 58:587–593. doi:10.1021/jf9028656

    Article  CAS  PubMed  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304

    Article  CAS  PubMed  Google Scholar 

  • Tomoko Y, Hitoshi T, Teruyoshi M, Terao J (1998) HPLC method for evaluation of the free radical scavenging activity of foods by using 1, 1-diphenyl-2-picrylhydrazyl. Biosci Biotechnol Biochem 62:1201–1204

    Article  Google Scholar 

  • University of California (2017) Ms-Fit. http://prospector.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msfitstandard. Accessed 9 May 2016

  • Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32:D590–D592. doi:10.1093/nar/gkh025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K, Wisman E, Steiner-Lange S, Saedler H, Yephremov A (2001) Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid ω-hydroxylation in development. Proc Natl Acad Sci USA 98:9694–9699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witherup KM, Bogusky MJ, Anderson PS, Ramjit H, Ransom RW, Wood T, Sardana M (1994) Cyclopsychotride-A, a biologically-active, 31-residue cyclic peptide isolated from Psychotria-longipes. J Nat Prod 57:1619–1625. doi:10.1021/Np50114a002

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Huang J, Xu X, Jin Z (2008) Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem 111:370–376. doi:10.1016/j.foodchem.2008.03.078

    Article  CAS  PubMed  Google Scholar 

  • Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet 122:1017–1028. doi:10.1007/s00122-010-1506-3

    Article  PubMed  Google Scholar 

  • Zhu K, Zhou H, Qian H (2006) Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochem 41:1296–1302. doi:10.1016/j.procbio.2005.12.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Ministry of Higher Education, Malaysia under the Exploratory Research Grant Scheme (4L114) and Higher Institution Centre of Excellence (4J263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Suan Chua.

Ethics declarations

Conflict of interest

Abdullah FI declares that she has no conflict of interest. Chua LS declares that she has no conflict of interest. Rahmat Z declares that she has no conflict of interest. Soontorngun N declares that she has no conflict of interest. Somboon P declares that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, F.I., Chua, L.S., Rahmat, Z. et al. Trypsin Hydrolysed Protein Fractions as Radical Scavengers and Anti-bacterial Agents from Ficus deltoidea . Int J Pept Res Ther 24, 279–290 (2018). https://doi.org/10.1007/s10989-017-9613-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-017-9613-5

Keywords

Navigation