Skip to main content

Advertisement

Log in

Systematic Review: Insight into Antimalarial Peptide

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Antimalarial peptides varying in size, sequence, charge, conformation and structure, hydrophobicity and amphipathicity reflect their heterogeneity in antimalarial activity. Due to global concern of antimalarial drug resistance, these peptides are seldom in attention for therapeutic values as this microbial and synthetic peptide are likely known for delaying the drug resistance phenomenon. Despite of this, among most of the peptides that have shown activity in cultured parasitized erythrocytes were failing to show its efficacy on in vivo models and few of them that are efficacious are not clinically significant on the host. A systematic literature search was carried out to obtain all related studies in PubMed, EMBASE and GOOGLE SCHOLAR from year 1989 to till date 2015 and we found only 63 studies that focus on antimalarial activity of different peptides originated from different sources under in vitro and in vivo conditions. Antimalarial peptides that are mostly included in this review is the naturally occurring along with their derivatives obtained from different sources ranging from lower prokaryotes to higher eukaryotes. Most of the antimalarial peptides had undergone only in vitro testing on Plasmodium falciparum strains having very less potency, but higher selectivity in comparison to standard drugs. The study included in this article will give future direction for development of more antimalarial peptide with desired efficacy and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Achtman AH, Pilat S, Law CW, Lynn DJ, Janot L, Mayer ML, Ma S, Kindrachuk J, Finlay BB, Brinkman FS, Smyth GK, Hancock RE, Schofield L (2012) Effective adjunctive therapy by an innate defense regulatory peptide in a preclinical model of severe malaria. Sci Transl Med 4(135):135ra64. doi:10.1126/scitranslmed.3003515

    Article  PubMed  Google Scholar 

  • Aminake MN, Schoof S, Sologub L, Leubner M, Kirschner M, Arndt HD, Pradel G (2011) Thiostrepton and derivatives exhibit antimalarial and gametocytocidal activity by dually targeting parasite proteasome and apicoplast. Antimicrob Agents Chemother 55(4):1338–1348. doi:10.1128/AAC.01096-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrighi RB, Nakamura C, Miyake J, Hurd H, Burgess JG (2002) Design and activity of antimicrobial peptides against sporogonic-stage parasites causing murine malaria. Antimicrob Agents Chemother 46(7):2104–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrighi RB, Ebikeme C, Jiang Y, Ranford-Cartwright L, Barrett MP, Langel U, Faye I (2008) Cell-penetrating peptide TP10 shows broad-spectrum activity against both Plasmodium falciparum and Trypanosoma brucei brucei. Antimicrob Agents Chemother 52(9):3414–3417. doi:10.1128/AAC.01450-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azouzi S, Morandat S, El Kirat K (2011) The potent antimalarial peptide cyclosporin A induces the aggregation and permeabilization of sphingomyelin-rich membranes. Langmuir 27(15):9465–9472

    Article  CAS  PubMed  Google Scholar 

  • Barbosa Pelegrini P, Del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF (2011) Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int. 2011:250349. doi:10.1155/2011/250349

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell A (2011) Antimalarial peptides: the long and the short of it. Curr Pharm Des 17(25):2719–2731

    Article  CAS  PubMed  Google Scholar 

  • Boman HG, Wade D, Boman IA, Wåhlin B, Merrifield RB (1989) Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett 259(1):103–106

    Article  CAS  PubMed  Google Scholar 

  • Brown KL, Hancock RE (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18(1):24–30

    Article  CAS  PubMed  Google Scholar 

  • Carroll AR, Nash BD, Duffy S, Avery VM (2012) Albopunctatone, an antiplasmodial anthrone-anthraquinone from the Australian ascidian Didemnum albopunctatum. J Nat Prod 75(6):1206–1209. doi:10.1021/np300074z

    Article  CAS  PubMed  Google Scholar 

  • Chamlian M, Bastos EL, Maciel C, Capurro ML, Miranda A, Silva AF, Torres MD, Oliveira VX Jr (2013) A study of the anti-plasmodium activity of angiotensin II analogs. J Pept Sci 19(9):575–580. doi:10.1002/psc.2534

    Article  CAS  PubMed  Google Scholar 

  • Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758(9):1184–1202

    Article  CAS  PubMed  Google Scholar 

  • Charoenvit Y, Brice GT, Bacon D, Majam V, Williams J, Abot E, Ganeshan H, Sedegah M, Doolan DL, Carucci DJ, Zimmerman DH (2004) A small peptide (CEL-1000) derived from the beta-chain of the human major histocompatibility complex class II molecule induces complete protection against malaria in an antigen-independent manner. Antimicrob Agents Chemother 48(7):2455–2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SJ, Parent R, Guillaume C, Deregnaucourt C, Delarbre C, Ojcius DM, Montagne JJ, Célérier ML, Phelipot A, Amiche M, Molgo J, Camadro JM, Guette C (2004) Isolation and characterization of Psalmopeotoxin I and II: two novel antimalarial peptides from the venom of the tarantula Psalmopoeus cambridgei. FEBS Lett 572(1–3):109–117

    Article  CAS  PubMed  Google Scholar 

  • Conde R, Zamudio FZ, Rodríguez MH, Possani LD (2000) Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett 471(2–3):165–168

    Article  CAS  PubMed  Google Scholar 

  • Conroy T, Guo JT, Hunt NH, Payne RJ (2010) Total synthesis and antimalarial activity of symplostatin 4. Org Lett 12(23):5576–5579. doi:10.1021/ol1024663

    Article  CAS  PubMed  Google Scholar 

  • Cox FE (2010) History of the discovery of the malaria parasites and their vectors. Parasit Vectors. 3(1):5. doi:10.1186/1756-3305-3-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Craik DJ, Fairlie DP, Liras S, Price D (2013) The future of peptide-based drugs. Chem Biol Drug Des 81(1):136–147. doi:10.1111/cbdd.12055

    Article  CAS  PubMed  Google Scholar 

  • Dagan A, Efron L, Gaidukov L, Mor A, Ginsburg H (2002) In vitro antiplasmodium effects of dermaseptin S4 derivatives. Antimicrob Agents Chemother 46(4):1059–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darkin-Rattray SJ, Gurnett AM, Myers RW, Dulski PM, Crumley TM, Allocco JJ, Cannova C, Meinke PT, Colletti SL, Bednarek MA, Singh SB, Goetz MA, Dombrowski AW, Polishook JD, Schmatz DM (1996) Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci USA 93(23):13143–13147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darveau RP, Cunningham MD, Seachord CL, Cassiano-Clough L, Cosand WL, Blake J, Watkins CS (1991) Beta-lactam antibiotics potentiate magainin 2 antimicrobial activity in vitro and in vivo. Antimicrob Agents Chemother 35(6):1153–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efron L, Dagan A, Gaidukov L, Ginsburg H, Mor A (2002) Direct interaction of dermaseptin S4 aminoheptanoyl derivative with intraerythrocytic malaria parasite leading to increased specific antiparasitic activity in culture. J Biol Chem 277(27):24067–24072

    Article  CAS  PubMed  Google Scholar 

  • Elsbach P (2003) What is the real role of antimicrobial polypeptides that can mediate several other inflammatory responses? J Clin Invest 111(11):1643–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fennell BJ, Carolan S, Pettit GR, Bell A (2003) Effects of the antimitotic natural product dolastatin 10, and related peptides, on the human malarial parasite Plasmodium falciparum. J Antimicrob Chemother 51(4):833–841

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720

    Article  CAS  PubMed  Google Scholar 

  • Ganz T, Weiss J (1997) Antimicrobial peptides of phagocytes and epithelia. Semin Hematol 34(4):343–354

    CAS  PubMed  Google Scholar 

  • Gao B, Rodriguez Mdel C, Lanz-Mendoza H, Zhu S (2009) AdDLP, a bacterial defensin-like peptide, exhibits anti-plasmodium activity. Biochem Biophys Res Commun. 387(2):393–398. doi:10.1016/j.bbrc.2009.07.043

    Article  CAS  PubMed  Google Scholar 

  • García J, Curtidor H, Gil OL, Vanegas M, Patarroyo ME (2009) A Maurer’s cleft-associated Plasmodium falciparum membrane-associated histidine-rich protein peptide specifically interacts with the erythrocyte membrane. Biochem Biophys Res Commun. 380(1):122–126. doi:10.1016/j.bbrc.2009.01.050

    Article  PubMed  Google Scholar 

  • Gelhaus C, Jacobs T, Andrä J, Leippe M (2008) The antimicrobial peptide NK-2, the core region of mammalian NK-lysin, kills intraerythrocytic Plasmodium falciparum. Antimicrob Agents Chemother 52(5):1713–1720. doi:10.1128/AAC.01342-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh JK, Shaool D, Guillaud P, Cicéron L, Mazier D, Kustanovich I, Shai Y, Mor A (1997) Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis. J Biol Chem 272(50):31609–31616

    Article  CAS  PubMed  Google Scholar 

  • Gordon YJ, Romanowski EG, McDermott AM (2005) A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res 30(7):505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwadz RW, Kaslow D, Lee JY, Maloy WL, Zasloff M, Miller LH (1989) Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun 57(9):2628–2633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isaka M, Berkaew P, Intereya K, Komwijit S, Sathitkunanon T (2007) Antiplasmodial and antiviral cyclohexadepsipeptides from the endophytic fungus Pullularia sp. BCC 8613. Tetrahedron 63:6855–6860

    Article  CAS  Google Scholar 

  • Jaynes JM, Burton CA, Barr SB, Jeffers GW, Julian GR, White KL, Enright FM, Klei TR, Laine RA (1988) In vitro cytocidal effect of novel lytic peptides on Plasmodium falciparum and Trypanosoma cruzi. FASEB J. 2(13):2878–2883

    CAS  PubMed  Google Scholar 

  • Kang HK, Seo CH, Park Y (2015) Marine peptides and their anti-infective activities. Mar Drugs. 13(1):618–654. doi:10.3390/md13010618

    Article  PubMed  PubMed Central  Google Scholar 

  • Koczulla R, von Degenfeld G, Kupatt C, Krötz F, Zahler S, Gloe T, Issbrücker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest. 111(11):1665–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishna K, Sukumar M, Balaram P (1990) Structural chemistry and membrane modifying activity of the fungal polypeptides zervamicins, antiamoebins and efrapeptins. Pure Appl Chem 62:1417–1420

    Article  CAS  Google Scholar 

  • Krugliak M, Feder R, Zolotarev VY, Gaidukov L, Dagan A, Ginsburg H, Mor A (2000) Antimalarial activities of dermaseptin S4 derivatives. Antimicrob Agents Chemother 44(9):2442–2451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kückelhaus SA, Leite JR, Muniz-Junqueira MI, Sampaio RN, Bloch C Jr, Tosta CE (2009) Antiplasmodial and antileishmanial activities of phylloseptin-1, an antimicrobial peptide from the skin secretion of Phyllomedusa azurea (Amphibia). Exp Parasitol 123(1):11–16. doi:10.1016/j.exppara.2009.05.002

    Article  PubMed  Google Scholar 

  • Leite JR, Silva LP, Rodrigues MI, Prates MV, Brand GD, Lacava BM, Azevedo RB, Bocca AL, Albuquerque S, Bloch C Jr (2005) Phylloseptins: a novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus. Peptides 26(4):565–573

    Article  CAS  PubMed  Google Scholar 

  • Lesmes LP, Bohorquez MY, Carreño LF, Patarroyo ME, Lozano JM (2009) A C-terminal cationic fragment derived from an arginine-rich peptide exhibits in vitro antibacterial and anti-plasmodial activities governed by its secondary structure properties. Peptides 30(12):2150–2160. doi:10.1016/j.peptides.2009.08.011

    Article  CAS  PubMed  Google Scholar 

  • Linington RG, Gonzalez J, Ureña LD, Romero LI, Ortega-Barría E, Gerwick WH (2007) Venturamides A and B: antimalarial constituents of the panamanian marine Cyanobacterium Oscillatoria sp. J Nat Prod 70(3):397–401

    Article  CAS  PubMed  Google Scholar 

  • Linington RG, Clark BR, Trimble EE, Almanza A, Ureña LD, Kyle DE, Gerwick WH (2009) Antimalarial peptides from marine cyanobacteria: isolation and structural elucidation of gallinamide A. J Nat Prod 72(1):14–17. doi:10.1021/np8003529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love MS, Millholland MG, Mishra S, Kulkarni S, Freeman KB, Pan W, Kavash RW, Costanzo MJ, Jo H, Daly TM, Williams DR, Kowalska MA, Bergman LW, Poncz M, DeGrado WF, Sinnis P, Scott RW, Greenbaum DC (2012) Platelet factor 4 activity against P. falciparum and its translation to nonpeptidic mimics as antimalarials. Cell Host Microbe 12(6):815–823. doi:10.1016/j.chom.2012.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maciel C, de Oliveira Junior VX, Fázio MA, Nacif-Pimenta R, Miranda A, Pimenta PF, Capurro ML (2008) Anti-plasmodium activity of angiotensin II and related synthetic peptides. PLoS One 3(9):3296. doi:10.1371/journal.pone.0003296

    Article  Google Scholar 

  • Marcelo Der Torossian T, Silva AF, Alves FL, Capurro ML, Miranda A, Vani Xavier O Jr (2015) Highly potential antiplasmodial restricted peptides. Chem Biol Drug Des. 85(2):163–171. doi:10.1111/cbdd.12354

    Article  PubMed  Google Scholar 

  • Mason AJ, Moussaoui W, Abdelrahman T, Boukhari A, Bertani P, Marquette A, Shooshtarizaheh P, Moulay G, Boehm N, Guerold B, Sawers RJ, Kichler A, Metz-Boutigue MH, Candolfi E, Prévost G, Bechinger B (2009) Structural determinants of antimicrobial and antiplasmodial activity and selectivity in histidine-rich amphipathic cationic peptides. J Biol Chem 284(1):119–133. doi:10.1074/jbc.M806201200

    Article  CAS  PubMed  Google Scholar 

  • McConkey GA, Rogers MJ, McCutchan TF (1997) Inhibition of Plasmodium falciparum protein synthesis. Targeting the plastid-like organelle with thiostrepton. J Biol Chem 272(4):2046–2049

    Article  CAS  PubMed  Google Scholar 

  • McPhail KL, Correa J, Linington RG, Gonzalez J, Ortega-Barría E, Capson TL, Gerwick WH (2007) Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70(6):984–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno Y, Makioka A, Kawazu S, Kano S, Kawai S, Akaki M, Aikawa M, Ohtomo H (2002) Effect of jasplakinolide on the growth, invasion, and actin cytoskeleton of Plasmodium falciparum. Parasitol Res 88(9):844–848

    Article  PubMed  Google Scholar 

  • Moreira CK, Rodrigues FG, Ghosh A, Varotti Fde P, Miranda A, Daffre S, Jacobs-Lorena M, Moreira LA (2007) Effect of the antimicrobial peptide gomesin against different life stages of Plasmodium spp. Exp Parasitol. 116(4):346–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaraj G, Uma MV, Shivayogi MS, Balaram H (2001) Antimalarial activities of peptide antibiotics isolated from fungi. Antimicrob Agents Chemother 45(1):145–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilanonta C, Isaka M, Kittakoop P, Palittapongarnpim P, Kamchonwongpaisan S, Pittayakhajonwut D, Tanticharoen M, Thebtaranonth Y (2000) Antimycobacterial and antiplasmodial cyclodepsipeptides from the insect pathogenic fungus Paecilomyces tenuipes BCC 1614. Planta Med 66(8):756–758

    Article  CAS  PubMed  Google Scholar 

  • Otvos L Jr (2005) Antibacterial peptides and proteins with multiple cellular targets. J Pept Sci 11(11):697–706

    Article  CAS  PubMed  Google Scholar 

  • Peña S, Scarone L, Manta E, Stewart L, Yardley V, Croft S, Serra G (2012) Synthesis of a Microcystis aeruginosa predicted metabolite with antimalarial activity. Bioorg Med Chem Lett 22(15):4994–4997. doi:10.1016/j.bmcl.2012.06.028

    Article  PubMed  Google Scholar 

  • Pérez-Picaso L, Velasco-Bejarano B, Aguilar-Guadarrama AB, Argotte-Ramos R, Rios MY (2009) Antimalarial activity of ultra-short peptides. Molecules 14(12):5103–5114. doi:10.3390/molecules14125103

    Article  PubMed  Google Scholar 

  • Portmann C, Blom JF, Gademann K, Jüttner F (2008) Aerucyclamides A and B: isolation and synthesis of toxic ribosomal heterocyclic peptides from the cyanobacterium Microcystis aeruginosa PCC 7806. J Nat Prod 71(7):1193–1196. doi:10.1021/np800118g

    Article  CAS  PubMed  Google Scholar 

  • Radzishevsky I, Krugliak M, Ginsburg H, Mor A (2007) Antiplasmodial activity of lauryl-lysine oligomers. Antimicrob Agents Chemother 51(5):1753–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rautenbach M, Vlok NM, Stander M, Hoppe HC (2007) Inhibition of malaria parasite blood stages by tyrocidines, membrane-active cyclic peptide antibiotics from Bacillus brevis. Biochim Biophys Acta 1768(6):1488–1497

    Article  CAS  PubMed  Google Scholar 

  • WHO Malaria report 2014

  • Rogers MJ, Bukhman YV, McCutchan TF, Draper DE (1997) Interaction of thiostrepton with an RNA fragment derived from the plastid-encoded ribosomal RNA of the malaria parasite. RNA 3(8):815–820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers MJ, Cundliffe E, McCutchan TF (1998) The antibiotic micrococcin is a potent inhibitor of growth and protein synthesis in the malaria parasite. Antimicrob Agents Chemother 42(3):715–716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenthal PJ (2011) Falcipains and other cysteine proteases of malaria parasites. Adv Exp Med Biol 712:30–48. doi:10.1007/978-1-4419-8414-2_3

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal PJ, Wollish WS, Palmer JT, Rasnick D (1991) Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteine proteinase. J Clin Invest. 88(5):1467–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabareesh V, Ranganayaki RS, Raghothama S, Bopanna MP, Balaram H, Srinivasan MC, Balaram P (2007) Identification and characterization of a library of microheterogeneous cyclohexadepsipeptides from the fungus Isaria. J Nat Prod 70(5):715–729

    Article  CAS  PubMed  Google Scholar 

  • Sharma I, Sullivan M, McCutchan TF (2015) In vitro antimalarial activity of novel semisynthetic nocathiacin I antibiotics. Antimicrob Agents Chemother. 59(6):3174–3179. doi:10.1128/AAC.04294-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva AF, Bastos EL, Torres MD, Costa-da-Silva AL, Ioshino RS, Capurro ML, Alves FL, Miranda A, Vieira Rde F, Oliveira VX Jr (2014) Antiplasmodial activity study of angiotensin II via Ala scan analogs. J Pept Sci. 20(8):640–648. doi:10.1002/psc.2641

    Article  CAS  PubMed  Google Scholar 

  • Simmaco M, Mignogna G, Barra D (1998) Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers 47(6):435–450

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Medhi B, Sehgal R (2014) Challenges of drug resistant malaria. Parasite 21:61. doi:10.1051/parasite/2014059

    Article  PubMed  PubMed Central  Google Scholar 

  • Sørensen O, Cowland JB, Askaa J, Borregaard N (1997) An ELISA for hCAP-18, the cathelicidin present in human neutrophils and plasma. J Immunol Methods 206(1–2):53–59

    Article  PubMed  Google Scholar 

  • Status report on artemisinin resistance WHO 2014

  • Steinberg DA, Hurst MA, Fujii CA, Kung AH, Ho JF, Cheng FC, Loury DJ, Fiddes JC (1997) Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity. Antimicrob Agents Chemother 41(8):1738–1742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stolze SC, Deu E, Kaschani F, Li N, Florea BI, Richau KH, Colby T, van der Hoorn RA, Overkleeft HS, Bogyo M, Kaiser M (2012) The antimalarial natural product symplostatin 4 is a nanomolar inhibitor of the food vacuole falcipains. Chem Biol 19(12):1546–1555. doi:10.1016/j.chembiol.2012.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan M, Li J, Kumar S, Rogers MJ, McCutchan TF (2000) Effects of interruption of apicoplast function on malaria infection, development, and transmission. Mol Biochem Parasitol 109(1):17–23

    Article  CAS  PubMed  Google Scholar 

  • Taliaferro LC, Coulston F, Silverman M (1944) The antimalarial activity of tyrothricin against Plasmodium gallinaceum. J Infect Dis 75:179–212

    Article  CAS  Google Scholar 

  • Tang XJ, Thibault P, Boyd RK (1992) Characterization of the tyrocidine and gramicidin fraction of the tyrothricin complex from Bacillus brevis using liquid chromatography and mass spectrometry. Int J Mass Spectrom Ion Process 122:143–151

    Article  Google Scholar 

  • Thongtan J, Saenboonrueng J, Rachtawee P, Isaka M (2006) An antimalarial tetrapeptide from the entomopathogenic fungus Hirsutella sp. BCC 1528. J Nat Prod 69(4):713–714

    Article  CAS  PubMed  Google Scholar 

  • Tian C, Gao B, Rodriguez Mdel C, Lanz-Mendoza H, Ma B, Zhu S (2008) Gene expression, antiparasitic activity, and functional evolution of the drosomycin family. Mol Immunol. 45(15):3909–3916. doi:10.1016/j.molimm.2008.06.025

    Article  CAS  PubMed  Google Scholar 

  • Tripathi A, Puddick J, Prinsep MR, Rottmann M, Tan LT (2010) Lagunamides A and B: cytotoxic and antimalarial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J Nat Prod 73(11):1810–1814. doi:10.1021/np100442x

    Article  CAS  PubMed  Google Scholar 

  • Uhliga T, Kyprianoua T, Martinellia FG, Oppicia CA, Heiligersa D, Hillsa D, Calvoa XR, Verhaerta P (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteomics. 4:58–69

    Article  Google Scholar 

  • Upton M, Cotter P, Tagg J (2012) Antimicrobial peptides as therapeutic agents. Int J Microbiol. doi:10.1155/2012/326503

    PubMed  PubMed Central  Google Scholar 

  • Vale N, Aguiar L, Gomes P (2014) Antimicrobial peptides: a new class of antimalarial drugs? Front Pharmacol. 5:275. doi:10.3389/fphar.2014.00275

    Article  PubMed  PubMed Central  Google Scholar 

  • Vizioli J, Bulet P, Charlet M, Lowenberger C, Blass C, Müller HM, Dimopoulos G, Hoffmann J, Kafatos FC, Richman A (2000) Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol. 9(1):75–84

    Article  CAS  PubMed  Google Scholar 

  • Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today. 15(1–2):40–56. doi:10.1016/j.drudis.2009.10.009

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32(Database issue):D590–D592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willcox ML, Bodeker G (2004) Traditional herbal medicines for malaria. BMJ 329(7475):1156–1159

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23(6):291–296

    Article  CAS  PubMed  Google Scholar 

  • Yeaman MR, Gank KD, Bayer AS, Brass EP (2002) Synthetic peptides that exert antimicrobial activities in whole blood and blood-derived matrices. Antimicrob Agents Chemother 46(12):3883–3891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

There is no financial support in preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikash Medhi.

Ethics declarations

Conflict of Interest

All the authors of this manuscript; Shweta Sinha, Ashutosh Singh, Bikash Medhi, and Rakesh Sehgal declare that they do not have any conflict of Interest.

Statement of Informed Consent

The article does not contain any studies in patients by any of the authors.

Statement of Human and Animal Rights

This article does not contain studies with human or animal subjects performed by any of the authors that should be approved by Ethics Committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Singh, A., Medhi, B. et al. Systematic Review: Insight into Antimalarial Peptide. Int J Pept Res Ther 22, 325–340 (2016). https://doi.org/10.1007/s10989-016-9512-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-016-9512-1

Keywords

Navigation