Skip to main content

Advertisement

Log in

Substitution of the Echistatin Amino Acid Motif RGDD with KGDW Enhances Inhibition of Platelet Aggregation and Thrombogenesis

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Disintegrins are a family of small proteins found in snake venom. These proteins are of great biomedical importance due to their binding affinities with different kinds of integrins, which results in the inhibition of platelet aggregation, the adhesion of cancer cells, and the induction of signal transduction pathways. Disintegrins are multi-functional due to their lower integrin selectivity. To increase their binding specificity with platelets, we modified the gene sequence encoding one kind of disintegrins, echistatin (Ech). DNA recombination technology was used to change the Ech amino acid sequence RGDD to KGDW, which are located at the 24th–27th location site of Ech, thereby creating a mutant protein echistatin (E-KW). The E-KW was expressed, isolated and purified using molecular biological methods. ADP-induced platelet aggregation in human platelet-rich plasma was inhibited by E-KW at 45 nM and by Ech at an IC50 of 140 nM (P < 0.05). E-KW was also more effective than wild-type Ech in inhibiting thrombus formation (12.8 ± 3.2 vs. 27.9 ± 4.1, P < 0.05). Our studies revealed that, compared to wild-type Ech, E-KW had stronger binding specificity to the glucoprotein receptors on platelet membranes and was more effective in inhibiting platelet aggregation and thrombogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alimenti E, Tafuri S, Scibelli A, D’Angelo D, Manna L, Pavone LM, Belisario MA, Staiano N (2004) Pro-apoptotic signaling pathway activated by echistatin in GD25 cells. Biochim Biophys Acta 1693:73–80

    Article  CAS  PubMed  Google Scholar 

  • Assumpcao TC, Ribeiro JM, Francischetti IM (2012) Disintegrins from hematophagous sources. Toxins (Basel) 4:296–322

    Article  CAS  Google Scholar 

  • Blobel CP, White JM (1992) Structure, function and evolutionary relationship of proteins containing a disintegrin domain. Curr Opin Cell Biol 4:760–765

    Article  CAS  PubMed  Google Scholar 

  • Butera D, Piazza RM, McLane MA, Chammas R, da Silva AM (2005) Molecular engineering of an EGFP/disintegrin-based integrin marker. Toxicon 46:178–184

    Article  CAS  PubMed  Google Scholar 

  • Calvete JJ, Marcinkiewicz C, Monleon D, Esteve V, Celda B, Juarez P, Sanz L (2005) Snake venom disintegrins: evolution of structure and function. Toxicon 45:1063–1074

    Article  CAS  PubMed  Google Scholar 

  • Da Silva M, Lucena S, Aguilar I, Rodriguez-Acosta A, Salazar AM, Sanchez EE, Giron ME, Carvajal Z, Arocha-Pinango CL, Guerrero B (2009) Anti-platelet effect of cumanastatin 1, a disintegrin isolated from venom of South American Crotalus rattlesnake. Thromb Res 123:731–739

    Article  PubMed  Google Scholar 

  • Gan ZR, Gould RJ, Jacobs JW, Friedman PA, Polokoff MA (1988) Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. J Biol Chem 263:19827–19832

    CAS  PubMed  Google Scholar 

  • Guo Y, Fan L, Dong LY, Chen ZW (2005) Effects of total flavone of Abelmoschl Manihot L. Medic on the function of platelets and its mechanism. Chin J Integr Med 11:57–59

    Article  PubMed  Google Scholar 

  • Hallak LK, Merchan JR, Storgard CM, Loftus JC, Russell SJ (2005) Targeted measles virus vector displaying echistatin infects endothelial cells via αvβ3 and leads to tumor regression. Cancer Res 65:5292–5300

    Article  CAS  PubMed  Google Scholar 

  • Hantgan RR, Stahle MC, Connor JH, Horita DA, Rocco M, McLane MA, Yakovlev S, Medved L (2006) Integrin αIIbβ3:ligand interactions are linked to binding-site remodeling. Protein Sci 15:1893–1906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jing J, Lu S (2005) Inhibition of platelet aggregation of a mutant proinsulin chimera engineered by introduction of a native Lys-Gly-Asp-containing sequence. Biotechnol Lett 27:1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Lu D, Scully MF, Kakkar VV (2005) Snake venom metalloproteinase containing a disintegrin-like domain, its structure-activity relationships at interacting with integrins. Curr Med Chem Cardiovasc Hematol Agents 3:249–260

    Article  CAS  PubMed  Google Scholar 

  • Marcinkiewicz C, Vijay-Kumar S, McLane MA, Niewiarowski S (1997) Significance of RGD loop and C-terminal domain of echistatin for recognition of αIIbβ3 and αvβ3 integrins and expression of ligand-induced binding site. Blood 90:1565–1575

    CAS  PubMed  Google Scholar 

  • McLane MA, Kuchar MA, Brando C, Santoli D, Paquette-Straub CA, Miele ME (2001) New insights on disintegrin-receptor interactions: eristostatin and melanoma cells. Haemostasis 31:177–182

    CAS  PubMed  Google Scholar 

  • McLane MA, Sanchez EE, Wong A, Paquette-Straub C, Perez JC (2004) Disintegrins. Curr Drug Targets Cardiovasc Haematol Disord 4:327–355

    Article  CAS  PubMed  Google Scholar 

  • Minoux H, Chipot C, Brown D, Maigret B (2000) Structural analysis of the KGD sequence loop of barbourin, an αIIbβ3-specific disintegrin. J Comput Aided Mol Des 14:317–327

    Article  CAS  PubMed  Google Scholar 

  • Monleon D, Esteve V, Kovacs H, Calvete JJ, Celda B (2005) Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR. Biochem J 387:57–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oshikawa K, Terada S (1999) Ussuristatin 2, a novel KGD-bearing disintegrin from Agkistrodon ussuriensis venom. J Biochem 125:31–35

    Article  CAS  PubMed  Google Scholar 

  • Pfaff M, McLane MA, Beviglia L, Niewiarowski S, Timpl R (1994) Comparison of disintegrins with limited variation in the RGD loop in their binding to purified integrins αIIbβ3, αVβ3 and α5β1 and in cell adhesion inhibition. Cell Adhes Commun 2:491–501

    Article  CAS  PubMed  Google Scholar 

  • Reiss S, Sieber M, Oberle V, Wentzel A, Spangenberg P, Claus R, Kolmar H, Losche W (2006) Inhibition of platelet aggregation by grafting RGD and KGD sequences on the structural scaffold of small disulfide-rich proteins. Platelets 17:153–157

    Article  CAS  PubMed  Google Scholar 

  • Sanchez EE, Lucena SE, Reyes S, Soto JG, Cantu E, Lopez-Johnston JC, Guerrero B, Salazar AM, Rodriguez-Acosta A, Galan JA, Tao WA, Perez JC (2010) Cloning, expression, and hemostatic activities of a disintegrin, r-mojastin 1, from the mohave rattlesnake (Crotalus scutulatus scutulatus). Thromb Res 126:e211–e219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scarborough RM, Rose JW, Hsu MA, Phillips DR, Fried VA, Campbell AM, Nannizzi L, Charo IF (1991) Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J Biol Chem 266:9359–9362

    CAS  PubMed  Google Scholar 

  • Scarborough RM, Rose JW, Naughton MA, Phillips DR, Nannizzi L, Arfsten A, Campbell AM, Charo IF (1993) Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J Biol Chem 268:1058–1065

    CAS  PubMed  Google Scholar 

  • Singhamatr P, Rojnuckarin P (2007) Molecular cloning of albolatin, a novel snake venom metalloprotease from green pit viper (Trimeresurus albolabris), and expression of its disintegrin domain. Toxicon 50:1192–1200

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Yamashita A, Moriguchi-Goto S, Sugita C, Matsumoto T, Matsuda S, Sato Y, Kitazawa T, Hattori K, Shima M, Asada Y (2010) Inhibition of factor XI reduces thrombus formation in rabbit jugular vein under endothelial denudation and/or blood stasis. Thromb Res 125:464–470

    Article  CAS  PubMed  Google Scholar 

  • Waeonukul R, Pason P, Kyu KL, Sakka K, Kosugi A, Mori Y, Ratanakhanokchai K (2009) Cloning, sequencing, and expression of the gene encoding a multidomain endo-beta-1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J Microbiol Biotechnol 19:277–285

    CAS  PubMed  Google Scholar 

  • Yang LJ, Yang T, Cheng NL, Xie J, Niu B (2006) Fermentation and purification of Echistatin fusion protein expressed in Escherichia coli. Wei Sheng Wu Xue Bao 46:95–98

    CAS  PubMed  Google Scholar 

  • Yang T, Niu B, Cheng NL, Xie J, Zhang YH, Yang LJ (2009) Replacement of RGD motif with RGDNM attenuates echistatin’s anti-platelet aggregation effect, but enhances its inhibition on angiogenesis. Chin J Biochem Mol Biol 25:834–838

    CAS  Google Scholar 

  • Yang T, Yang L, Chai W, Li R, Xie J, Niu B (2011) A strategy for high-level expression of a single-chain variable fragment against TNFα by subcloning antibody variable regions from the phage display vector pCANTAB 5E into pBV220. Protein Expr Purif 76:109–114

    Article  CAS  PubMed  Google Scholar 

  • You WK, Jang YJ, Chung KH, Jeon OH, Kim DS (2006) Functional roles of the two distinct domains of halysase, a snake venom metalloprotease, to inhibit human platelet aggregation. Biochem Biophys Res Commun 339:964–970

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dong-dong Sun for his involvement in the initiation of experiments. This research was supported by grants from the National Natural Science Foundation of China (81101895), Program for the Top Young Academic Leaders of Higher Learning Institutions and Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province.

Conflict of interests

The authors declared that they have no conflicts of interest to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, LJ., Niu, B., Zhang, D. et al. Substitution of the Echistatin Amino Acid Motif RGDD with KGDW Enhances Inhibition of Platelet Aggregation and Thrombogenesis. Int J Pept Res Ther 21, 451–458 (2015). https://doi.org/10.1007/s10989-015-9475-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-015-9475-7

Keywords

Navigation