Skip to main content
Log in

Optimization of Sterilization of Salmonella enteritidis in Meat by Surfactin and Iturin Using a Response Surface Method

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

In this paper, the sterilization of surfactin and iturin to Salmonella enteritidis was observed, and the optimization of the inactivation of surfactin and iturin to S. enteritidis in meat by a response surface methodology was studied. Results showed that surfactin and iturin had high sterilization to S. enteritidis, whose minimal inhibitory concentration was 6.25 and 12.50 μM respectively. The optimization result indicated that S. enteritidis could be inactivated by five orders of magnitude when the temperature was 4.83°C, the action time was 17.20 h, and the concentration (surfactin/iturin molar ratio 1:2) was 0.69 MIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abee T, Krockel L, Hill C (1995) Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol 28(2):169–185

    Article  PubMed  CAS  Google Scholar 

  • Bailey JS (1998) Detection of Salmonella cells within 24 to 26 hours in poultry samples with the polymerase chain reaction BAX system. J Food Prot 61(7):792–795

    PubMed  CAS  Google Scholar 

  • Bernheimer AW, Avigad LS (1970) Nature and properties of a cytolytic agent produced by Bacillus subtilis. J Gen Microbiol 61(3):361–369

    PubMed  CAS  Google Scholar 

  • Beuchat LR (1996) Pathogenic microorganisms associated with fresh produce. J Food Prot 59:204–216

    Google Scholar 

  • Béven L, Wróblewski H (1997) Effect of natural amphipathic peptides on viability, membrane potential, cell shape and motility of mollicutes. Res Microbiol 148(2):163–175

    Article  PubMed  Google Scholar 

  • CDC (2005) Salmonella surveillance: annual summary 2004. US Department of Health and Human Services. Centres for Disease Control and Prevention, Atlanta, Georgia

    Google Scholar 

  • Cooper DG, Macdonald CR, Duff SJ, Kosaric N (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42(3):408–412

    PubMed  CAS  Google Scholar 

  • Davies RH, Dalziel R, Gibbens JC, Wilesmith JW, Ryan JM, Evans SJ, Byrne C, Paiba GA, Pascoe SJ, Teale CJ (2004) National survey for Salmonella in pigs, cattle and sheep at slaughter in Great Britain (1999–2000). J Appl Microbiol 96:750–760

    Article  PubMed  CAS  Google Scholar 

  • De Vuist L, Vandamme EJ, (eds) (1994) Nisin, a lantibiotic produced by Lactococcus lactis subsp. lactis: properties, biosynthesis, fermentation and application. Blackie Academic Press, Glasgow, pp 151–222

  • Deleu M, Bouffioux O, Razafindralambo H, Paquot M, Hibd C, Thonart P, Jacques P, Brasseur R (2003) Interaction of surfactin with membranes: a computational approach. Langmuir 19:3377–3385

    Article  CAS  Google Scholar 

  • Edwards RA, Olsen GJ, Maloy SR (2002) Comparative genomics of closely related salmonellae. Trends Microbiol 10:94–99

    Article  PubMed  CAS  Google Scholar 

  • Fang TJ (2005) Bacterial contamination of ready-to-eat foods: concern for human toxicity. Rev Food Nutr Toxic 6:143–171

    Google Scholar 

  • Gillespie IA, O’Brien SJ, Adak GK, Ward LR, Smith HR (2005) Foodborne general outbreaks of Salmonella enteritidis phage type 4 infection, England and Wales, 1992–2002: where are the risks? Epidemiol Infect 133(5):795–801

    Article  PubMed  CAS  Google Scholar 

  • Hald T, Wingstrand A, Swanenburg M, von Altrock A, Thorberg BM (2003) The occurrence and epidemiology of Salmonella in European pig slaughterhouses. Epidemiol Infect 131:1187–1203

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Lu Z, Bie X, Lu F, Zhao H, Yang S (2007) Optimization of inactivation of endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillus subtilis fmbj strains using a response surface method. Appl Microbiol Biotechnol 74(2):454–461

    Article  PubMed  CAS  Google Scholar 

  • Kameda Y, Oira S, Matsui K, Kanatomo S, Hase T (1974) Antitumor activity of Bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chem Pharm Bull 22(4):938–944

    PubMed  CAS  Google Scholar 

  • Kasbohrer A, Protz D, Helmuth R, Nockler K, Blaha T, Conraths FJ, Geue L (2000) Salmonella in slaughter pigs of German origin: an epidemiological study. Eur J Epidemiol 16(2):141–146

    Article  PubMed  CAS  Google Scholar 

  • Kracht M, Rokos H, Ozel M, Kowall M, Pauli G, Vater J (1999) Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot 52(7):613–619

    PubMed  CAS  Google Scholar 

  • Lampel KA, Orlandi PA, Kornegay L (2000) Improved template preparation for PCR-based assays for detection of foodborne bacterial pathogens. Appl Environ Microbiol 60:4539–4542

    Article  Google Scholar 

  • Lin SC, Minton MA, Sharma MM, Georgiou G (1994) Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl Environ Microbiol 60(1):31–38

    PubMed  CAS  Google Scholar 

  • Liu BL, Tzeng YM (1998) Optimization of growth medium for the production of spores from Bacillus thuringiensis using response surface methodology. Bioprocess Eng 18:413–418

    CAS  Google Scholar 

  • Masashi O, Hajime T, Takashi K, Shuichi K, Akiko S, Kazuaki T, Masayuki N (2007) Comparative evaluation of a bivalent killed Salmonella vaccine to prevent egg contamination with Salmonella enterica serovars Enteritidis, Typhimurium, and Gallinarum biovar Pullorum, using 4 different challenge models. Vaccine 25:4837–4844

    Article  Google Scholar 

  • Montville TJ, Winkowski K (1997) Biologically based preservation systems and probiotic bacteria. In: Doyle MP, Beuchat LR, Montville TJ (eds) Food microbiology. Fundamentals and frontiers. ASM Press, USA, pp 557–576

    Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85(1–2):111–125

    Article  PubMed  CAS  Google Scholar 

  • Okeke IN, Klugman KP, Bhutta ZA, Duse AG, Jenkins P, O’Brien TF, Pablos-Mendez A, Laxminarayan R (2005) Antimicrobial resistance in developing countries. Part II: strategies for containment. Lancet Infect Dis 5:568–580

    Article  PubMed  Google Scholar 

  • Reddy PRM, Mrudula S, Ramesh B, Reddy G (2000) Production of thermostable pullulanase by Clostridium thermosulfurogenes SV2 in solid-state fermentation: optimization of enzyme leaching conditions using response surface methodology. Bioprocess Eng 23:107–112

    Article  Google Scholar 

  • Sen R (1997) Response surface optimization of the critical media components for production of surfactin. J Chem Tech Biotechnol 68:263–270

    Article  CAS  Google Scholar 

  • Sen R, Swaminathan T (2004) Response surface modeling and optimization to elucidate the effects of inoculum age &size on surfactin production. Biochem Eng J 21:141–148

    Article  CAS  Google Scholar 

  • Sivapalasingam S, Friedman CR, Cohen L (2004) Fresh produce: a growing cause of outbreaks of foodborne illness in the United States, 1973 through 1997. J Food Prot 67(10):2342–2353

    PubMed  Google Scholar 

  • Tauxe R, Kruse H, Hedberg C, Potter M, Madden J, Wachsmuth K (1997) Microbial hazards and emerging issues associated with produce; a preliminary report to the National Advisory Committee on Microbiologic Criteria for Foods. J Food Prot 60:1400–1408

    Google Scholar 

  • Tsukagoshi N, Tamura G, Arima K (1970) A novel protoplast bursting factor (surfactin) obtained from Bacillus subtilis IAM 1213: I. The effects of surfactin on Bacillus megaterium K.M. Biochim Biophys Acta 196(2):204–210

    Article  PubMed  CAS  Google Scholar 

  • Valentina R, Mark SC, Antonella S, Jens PC, Line ET, Salvatore R, John EO (2007) Effects of crp deletion in Salmonella enterica serotype Gallinarum. Acta Vet Scand 49:13–19

    Article  Google Scholar 

  • Vollenbroich D, Ozel M, Vater J, Kamp RM, Pauli G (1997a) Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals 25(3):289–297

    Article  PubMed  CAS  Google Scholar 

  • Vollenbroich D, Pauli G, Ozel M (1997b) Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 63(1):44–49

    PubMed  CAS  Google Scholar 

  • Vorland LH, Ulvatne H, Andersen J, Haukland H, Rekdal O (1998) Lactoferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scand J Infect Dis 30(5):513–517

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianqing Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Gao, X., Zheng, L. et al. Optimization of Sterilization of Salmonella enteritidis in Meat by Surfactin and Iturin Using a Response Surface Method. Int J Pept Res Ther 15, 61–67 (2009). https://doi.org/10.1007/s10989-008-9164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-008-9164-x

Keywords

Navigation