Skip to main content
Log in

Novel Nociceptin Analogues: Synthesis and Biological Activity

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

Syntheses are described of the nociceptin (1–13) amide [NC(1–13)-NH2] and of several analogues in which either one or both the phenylalanine residues (positions 1 and 4), the arginine residues (positions 8 and 12) and the alanine residues (positions 7 and 11) have been replaced by N-benzyl-glycine, N-(3-guanidino-propyl)-glycine and β-alanine, respectively. The preparation is also described of NC(1–13)-NH2 analogues in which either galactose or N-acetyl-galactosamine are β-O-glycosidically linked to Thr5 and/or to Ser10. Preliminary pharmacological experiments on mouse vas deferens preparations showed that Phe4, Thr5, Ala7 and Arg8 are crucial residues for OP4 receptor activation. Manipulation of Phe1 yielded peptides endowed with antagonist activity but [Nphe1] NC(1–13)-NH2 acted as an antagonist still possessing weak agonist activity. Introduction of the βAla residue either in position 7 or 11 of the [Nphe1] NC(1–13)-NH2 sequence, abolished any residual agonist activity and [Nphe1, βAla7] NC(1–13)-NH2 and [Nphe1, βAla11] NC(1–13)-NH2 acted as competitive antagonists only. Modification of both Ala7 and Ala11 abolished the antagonist activity of [Nphe1]NC(1–13)-NH2 probably by hindering receptor binding. Changes at positions 10 and 11 gave analogues still possessing agonist activity. [Ser(βGal)10] NC(1–13)-NH2 displayed an activity comparable with that of NC(1–13)-NH2, [Ser(βGalNAc)10] NC(1–13)-NH2 and [βAla11] NC(1–13)-NH2 were five and 10 times less active, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Abbreviations

EDC:

N-(3-dimethylamino-isopropyl)-N-ethyl-carbodiimide

Gal:

β-d-galactopyranose

GalAc4 :

2,3,4,6-tetra-O-acetyl-β-d-galactopyranose

GalNAc:

2-deoxy-2-acetamido-β-d-galactopyranosylamine

GalNAcAc3 :

2-deoxy-2-acetamido-3,4,6-tri-O-acetyl-β-d-galactopyranosylamine

NMP:

N-methylpyrrolidone

NC:

nociceptin

Narg:

N-(3-guanidino-propyl)-glycine

Nphe:

N-benzylglycine

Rink amide MBHA resin:

[4-(2′,4′-dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido-norleucyl−4-methyl−4-benzydrylamine polystyrene]

TIS:

tri–isopropylsilane

References

  • Calò G., Guerrini R., Bigoni R., Rizzi A., Marzola G., Okawa H., Bianchi C., Lambert D. G., Salvadori S., Regoli D., 2000, Br. J. Pharmacol. 129: 1183–1193

    Article  PubMed  Google Scholar 

  • D’Amour F. E., Smith D. L., 1941, J. Pharmacol. Exp. Ther. 7: 74–79

    Google Scholar 

  • Davies B. G., 2002, Chem. Rev. 102: 579–601 and references therein cited

    Article  PubMed  CAS  Google Scholar 

  • Filira F., Biondi L., Cavaggion F., Scolaro B., Rocchi R., 1990, Int. J. Pept. Prot. Res. 36: 86–96

    Article  CAS  Google Scholar 

  • Hashimoto Y., Calò G., Guerrini R., Smith G., Lambert D. J., 2000, Neurosci. Lett. 278: 109–112

    Article  PubMed  CAS  Google Scholar 

  • Kessler H., 1993, Angew. Chem. Int. Ed. Engl. 32: 543–544

    Article  Google Scholar 

  • Kruijtzer J. A. W., Hofmeyer L. J. F., Heerma W., Versluis C., Liskamp R. M. J., 1998, Chem. Eur. J. 4: 1570–1580

    Article  CAS  Google Scholar 

  • Melchiorri P., Negri L., Falconieri Erspamer G., Severini C., Corsi R., Soaje M., Erspamer V., Barra D., 1991, Eur. J. Pharmacol. 195: 201–207

    Article  PubMed  CAS  Google Scholar 

  • Negri L., Lattanzi R., Tabacco F., Orrù I., Severini C., Scolaro B., Rocchi R., 1999, J. Med. Chem. 42: 400–404 and references therein cited

    Article  PubMed  CAS  Google Scholar 

  • Olinas M. C., Onali P., 2003, Life Sci. 72: 2905–2914

    Article  PubMed  CAS  Google Scholar 

  • Salvadori S., Guerrini R., Calò G., Regoli D., 1999. Il Farmaco 54: 810–825 and references therein cited

    Article  PubMed  CAS  Google Scholar 

  • Sarin, V. K., Kent, S. B., Tam, J. P. and Merrifield, R. B.: 1981, in D. M. Rich and E. Gross (eds.), Peptide Structure and Biological Function, Pierce Chemical Co. Rockford, Illinois, USA, pp. 559–561

  • Schweizer F., 2002, Angew. Chem. Int. Ed. Engl. 41: 230–253 and references therein cited

    Article  CAS  Google Scholar 

  • Simon R. J., Kania R. S., Zuckermann R. N., Huebner V. D., Jewell D. A., Banville S., Ng S., Wang L., Rosemberg S., Marlowe C. K., Spellmeyer D. C., Tan R., Frankel A. D., Santi D. V., Cohen F. E., Bartlett P. A., 1992, Proc. Natl. Acad. Sci. USA 89: 9367-9371

    Article  PubMed  CAS  Google Scholar 

  • Tallaride R. J., Murray R. B., 1986, Manual of Pharmacological Calculation, 2nd Ed., Springer-Verlag New York, pp. 53–55

    Google Scholar 

  • Zhang C., Miller W., Valenzani K., Kyle D. J., 2002, J. Med. Chem. 45: 5280–5286

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raniero Rocchi.

Additional information

The α-amino acid residues are of the l-configuration. Standard abbreviations for amino acid derivatives and peptides are according to the suggestions of the IUPAC-IUB Commission on Biochemical Nomeclature (1984), Eur. J. Biochem. 138, 9–37. Abbreviations listed in the guide published in (2003), J. Peptide Sci. 9, 1–8 are used without explanation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biondi, B., Goldin, D., Giannini, E. et al. Novel Nociceptin Analogues: Synthesis and Biological Activity . Int J Pept Res Ther 12, 139–144 (2006). https://doi.org/10.1007/s10989-006-9011-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-006-9011-x

Keywords

Navigation