Skip to main content
Log in

A note on the normalizing sequences for sums of linear processes in the case of negative memory

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider the partial-sum process \( {S}_n(t)={\sum}_{k=0}^{\left\lfloor nt\right\rfloor }{X}_k \) of linear processes \( {X}_n={\sum}_{i=0}^{\infty }{c}_i{\upxi}_{n-i} \) with independent identically distributed innovations {ξ i } belonging to the domain of attraction of α-stable law (0 < α ≤ 2). If |c k | = k −γ , k ∈  , γ > max(1, 1/α), and \( {\sum}_{k=0}^{\infty}\kern0.5em ck=0 \) (the case of negative memory for the stationary sequence {X n }), then it is known that the normalizing sequence of S n (1) can grow as n 1/α−γ+1 or remain bounded if the signs of the coefficients are constant or alternate, respectively. It is of interest to know whether it is possible, given ⋋ ∈ (0, 1/α − γ + 1), to change the signs of c k so that the rate of growth of the normalizing sequence would be n . In this paper, we give the positive answer: we propose a way of choosing the signs and investigate the finite-dimensional convergence of appropriately normalized S n (t) to linear fractional Lévy motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Astrauskas, Limit theorems for sums of linearly generated random variables, Lith. Math. J., 23(2):127–134, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Balan, A. Jakubowski, and S. Louhichi, Functional convergence of linear processes with heavy-tailed innovations, J. Theor. Probab., 29(2):491–526, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Bartkiewicz, A. Jakubowski, T. Mikosch, and O. Wintenberger, Stable limits for sums of dependent infinite variance random variables, Probab. Theory Relat. Fields, 150:337–372, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Basrak, D. Krizmanić, and J. Segers, A functional limit theorem for dependent sequences with infinite variance stable limits, Ann. Probab., 40:2008–2033, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  5. N.H. Bingham, C.M. Goldie, and J.L. Teugels, Regular Variation, Encycl. Math. Appl., Vol. 27, Cambridge Univ. Press, Cambridge, 1987.

  6. G.E.P. Box and G.M. Jenkins, Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, CA, 1970.

    MATH  Google Scholar 

  7. P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods, Springer-Verlag, New York, 1987.

    Book  MATH  Google Scholar 

  8. R. Davis and S. Resnick, Limit theory for moving averages of random variables with regularly varying tail probabilities, Ann. Probab., 13:179–195, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Giraitis, H.L. Koul, and D. Surgailis, Large Sample Inference for Long Memory Processes, Imperial College Press, London, 2012.

    Book  MATH  Google Scholar 

  10. I.A. Ibragimov and Yu.V. Linnik, Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, 1971.

    MATH  Google Scholar 

  11. A. Jakubowski, Minimal conditions in p-stable limit theorems, Stochastic Processes Appl., 44:291–327, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Jakubowski, Minimal conditions in p-stable limit theorems. ii, Stochastic Processes Appl., 68:1–20, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Paulauskas, Some remarks on definitions of memory for stationary random processes and fields, Lith. Math. J., 56(2):229–250, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Stochastic Modeling, Chapman & Hall, New York, 1994.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Damarackas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damarackas, J. A note on the normalizing sequences for sums of linear processes in the case of negative memory. Lith Math J 57, 421–432 (2017). https://doi.org/10.1007/s10986-017-9372-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-017-9372-1

MSC

Keywords

Navigation