Skip to main content
Log in

A general result on almost sure central limit theorem for self-normalized sums for mixing sequences*

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let X, X 1 , X 2 , . . . be a sequence of strictly stationary ϕ-mixing random variables with zero means. In this paper, we show that a self-normalized version of almost sure central limit theorem holds under the assumptions that the mixing coefficients satisfy \( \sum\nolimits_{n=1}^{\infty } {{\phi^{{{1 \left/ {2} \right.}}}}\left( {{2^n}} \right)<\infty } \); moreover, we no longer restrict ourselves to logarithmic averages, but allow rather arbitrary weight sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Balan and R. Kulik, Self-normalized weak invariance principle for mixing sequences, Tech. Report Ser. 417, Lab. Reas. Probab. Stat., Univ. Ottawa–Carleton Univ., 2005.

  2. R.M. Balan and R. Kulik, Weak invariance principle for mixing sequences in the domain of attraction of normal law, Stud. Sci. Math. Hung., 46(3):329–343, 2009.

    MathSciNet  MATH  Google Scholar 

  3. V. Bentkus and F. Götze, The Berry–Esseen bound for Student’s statistic, Ann. Probab., 24:466–490, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.

    MATH  Google Scholar 

  5. R.C. Bradley, Basic properties of strong mixing conditions. A survey and some open questions, Probab. Surv., 2:107–144, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  6. G.A. Brosamler, An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc., 104:561–574, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Csörgő, B. Szyszkowicz, and Q.Y.Wang, Darling–Erdos theorem for self-normalized partial sums, Ann. Probab., 31:676–692, 2003.

    Article  MathSciNet  Google Scholar 

  8. M. Csörgő, B. Szyszkowicz, and Q.Y. Wang, Donsker’s theorem for self-normalized partial sums processes, Ann. Probab., 31:1228–1240, 2003.

    Article  MathSciNet  Google Scholar 

  9. V.H. De la Peña, T.L. Tai, and Q.M. Shao, Self-Normalized Process: Limit Theory and Statistical Applications, Springer, New York, 2009.

    Google Scholar 

  10. J. Fredrik, Almost Sure Central Limit Theory, Master thesis, Department of Mathematics, Uppsala University, 2007.

  11. C.D. Fuh and T.X. Pang, A self-normalized central limit theorem for Markov random walks, Adv. Appl. Probab., 44(2):452–478, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Giné, F. Götze, and D.M. Mason, When is the Student t-statistic asymptotically standard normal?, Ann. Probab., 25:1514–1531, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Gonchigdanzan and G. Rempala, A note on the almost sure limit theorem for the product of partial sums, Appl. Math. Lett., 19:191–196, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  14. P.S. Griffin and J.D. Kuelbs, Self-normalized laws of the iterated logarithm, Ann. Probab., 17:1571–1601, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  15. S.H. Huang and T.X. Pang, An almost sure central limit theorem for self-normalized partial sums, Comput. Math. Appl., 60(9):2639–2644, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  16. I.A. Ibragimov, Some limit theorems for stationary process, Theory Probab. Appl., 7:349–382, 1962.

    Article  Google Scholar 

  17. B.Y. Jing, H.Y. Liang, and W. Zhou, Self-normalized moderate deviations for independent random variables, Sci. China, Math., 55(11):2297–2315, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y.X. Li and J.F. Wang, An almost sure central limit theorem for products of sums under association, Stat. Probab. Lett., 78(4):367–375, 2008.

    Article  MATH  Google Scholar 

  19. Z.Y. Lin, A self-normalized Chung-type law of iterated logarithm, Theory Probab. Appl., 41:791–798, 1996.

    MathSciNet  MATH  Google Scholar 

  20. W.D. Liu and Z.Y. Lin, Asymptotics for self-normalized random products of sums for mixing sequences, Stoch. Anal. Appl., 25:293–315, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  21. T.X. Pang, Z.Y. Lin, and K.S. Hwang, Asymptotics for self-normalized random products of sums of i.i.d. random variables, J. Math. Anal. Appl., 334:1246–1259, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Peligrad and H.L. Sang, Asymptotic properties of self-normalized linear processes with long memory, Econom. Theory, 28(3):548–569, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Peligrad and Q.M. Shao, A note on the almost sure central limit theorem for weakly dependent random variables, Stat. Probab. Lett., 22(2):131–136, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  24. Z.X. Peng, Z.Q. Tan, and S. Nadarajah, Almost sure central limit theorem for the products of U-statistics, Metrika, 73(1):61–76, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Račkauskas and C. Suquet, Invariance principles for adaptive self-normalized partial sums processes, Stoch. Process. Appl., 95(1):63–81, 2001.

    Article  MATH  Google Scholar 

  26. A. Račkauskas and C. Suquet, Functional central limit theorems for self-normalized partial sums of linear processes, Lith. Math. J., 51(2):251–259, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Schatte, On strong versions of the central limit theorem, Math. Nachr., 137:249–256, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  28. Q.M. Shao, Self-normalized large deviations, Ann. Probab., 25:285–328, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  29. Q.M. Shao, A Cramér type large deviation result for Student’s t-statistics, J. Theor. Probab., 12:385–398, 1999.

    Article  MATH  Google Scholar 

  30. Q.Y. Wu, A note on the almost sure limit theorem for self-normalized partial sums of random variables in the domain of attraction of the normal law, J. Inequal. Appl., 2012:17, 10 pp., 2012.

  31. Y. Zhang and X.Y. Yang, An almost sure central limit theorem for self-normalized products of sums of i.i.d. random variables, J. Math. Anal. Appl., 376(1):29–41, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. Zhang and X.Y. Yang, An almost sure central limit theorem for self-normalized weighted sums, Acta Math. Appl. Sin., Engl. Ser., 29(1):79–92, 2013.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Additional information

* The research was supported by the Basic Research Foundation of Jilin University (grant No. 201103204), the National Natural Science Foundation of China (grant No. 11101180), and the Science and Technology Development Program of Jilin Province (grant No. 20130522096JH).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y. A general result on almost sure central limit theorem for self-normalized sums for mixing sequences* . Lith Math J 53, 471–483 (2013). https://doi.org/10.1007/s10986-013-9222-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-013-9222-8

MSC

Keywords

Navigation