Skip to main content
Log in

On the existence of singular solutions of the stationary Navier–Stokes problem

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider the steady Navier–Stokes equations in the punctured regions (ı) Ω = Ω 0 \ {o} (with {o}Ω 0) and (ıı) \( \varOmega ={{\mathbb{R}}^2}\backslash \left( {{{\overline{\varOmega}}_0}\cup \left\{ o \right\}} \right) \) (with \( \left\{ o \right\}\notin {{\overline{\varOmega}}_0} \)), where Ω 0 is a simple connected Lipschitz bounded domain of \( {{\mathbb{R}}^2} \). We regard o as a sink or a source in the fluid. Accordingly, we assign the flux \( \mathcal{F} \) through a small circumference surrounding o and a boundary datum a on Γ = ∂Ω 0 such that the total flux \( \mathcal{F}+\int\nolimits_{\varGamma } {\boldsymbol{a}\cdot \boldsymbol{n}} \) is zero in case (ı). We prove that if \( \left| \mathcal{F} \right|<2\pi \nu \) and \( \left| \mathcal{F} \right|+\left| {\int\nolimits_{\varGamma } {\boldsymbol{a}\cdot \boldsymbol{n}} } \right|<2\pi \nu \) in (ı) and (ıı), respectively, where ν is the kinematical viscosity, then the problem has a C solution in Ω, which behaves at o like the gradient of the fundamental solution of the Laplace equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Amrouche and M.A. Rodríguez-Bellido, Stationary Stokes, Oseen and Navier–Stokes equations with singular data, Arch. Ration. Mech. Anal., 199:597–651, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Borchers and K. Pileckas, Note on the flux problem for stationary Navier–Stokes equations in domains with multiply connected boundary, Acta Appl. Math., 37:21–30, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Dindoš and M. Mitrea, The stationary Navier–Stokes system in nonsmooth manifolds: The Poisson problem in Lipschitz and C 1 domains, Arch. Ration. Mech. Anal., 174:1–47, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  4. E.B. Fabes, M. Jodeit Jr., and N.M. Rivière, Potential techniques for boundary-value problems on C 1 domains, Acta Math., 141:165–186, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  5. E.B. Fabes, C.E. Kenig, and G.C. Verchota, Boundary-value problems for the Stokes system on Lipschitz domains, Duke Math. J., 57:769–793, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Farwig, G.P. Galdi, and H. Sohr, A new class of weak solutions of the Navier–Stokes equations with nonhomogeneous data, J. Math. Fluid Mech., 8:423–444, 2005.

    Article  MathSciNet  Google Scholar 

  7. R. Farwig, G.P. Galdi, and H. Sohr, Very weak solutions and large uniqueness classes of stationary Navier–Stokes equations in bounded domains of \( {{\mathbb{R}}^2} \), J. Differ. Equations, 226:564–580, 2006.

    Article  MathSciNet  Google Scholar 

  8. R. Farwig and H. Sohr, Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier–Stokes equations in \( {{\mathbb{R}}^n} \), Czech. Math. J., 59:61–79, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  9. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady State Problems, 2nd ed., Springer Monogr. Math., Springer, 2011.

  10. G.P. Galdi, C.G. Simader, and H. Sohr, On the Stokes problem in Lipschitz domains, Ann. Mat. Pura Appl. (4), 167:147–163, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  11. G.P. Galdi, C.G. Simader, and H. Sohr, A class of solutions of stationary Stokes and Navier–Stokes equations with boundary data in W 1/q,q, Math. Ann., 331:41–74, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Gilbarg and H. Weinberger, Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., 5:381–404, 1978.

    MathSciNet  Google Scholar 

  13. L.V. Kapitanskii and K. Pileckas, On spaces of solenoidal vector fields and boundary-value problems for the Navier–Stokes equations in domains with noncompact boundaries, Tr. Mat. Inst. Steklova, 159:5–36, 1983. English transl.: Proc. Steklov Inst. Math., 159:3–34, 1984.

    Google Scholar 

  14. H. Kim and H. Kozono, A removable isolated singularity theorem for the stationary Navier–Stokes equations, J. Differ. Equations, 220:68–84, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  15. M.V. Korobkov, K. Pileckas, and R. Russo, On the flux problem in the theory of steady Navier–Stokes equations with nonhomogeneous boundary conditions, Arch. Ration. Mech. Anal., 207:185–213, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  16. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, 1969.

  17. J. Leray, Étude de diverses équations intégrales non linéaire et de quelques problèmes que pose l’hydrodynamique, J. Math. Pures Appl., 12:1–82, 1933.

    MathSciNet  Google Scholar 

  18. E. Marušic̀ Paloka, Solvability of the Navier–Stokes system with L 2 boundary data, Appl. Math. Optim., 41:365–375, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Miura and T.-P. Tsai, Point singularities of 3D stationary Navier–Stokes flows, J. Math. Fluid Mech., 14:33–41, 2012.

    Article  MathSciNet  Google Scholar 

  20. A. Russo, A note on the two-dimensional steady-state Navier–Stokes problem, J. Math. Fluid Mech., 11:407–414, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Russo, On the existence of D-solutions of the steady-state Navier–Stokes equations in plane exterior domains, 2011, arXiv:math/1101.1243.

  22. A. Russo and A. Tartaglione, On the Oseen and Navier–Stokes systems with a slip boundary condition, Appl. Math. Lett., 22:674–678, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Russo and A. Tartaglione, An existence theorem for the steady Navier–Stokes problem in higher dimensions, Tokyo J. Math., 34:525–533, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Russo and A. Tartaglione, On the Navier problem for the stationary Navier–Stokes equations, J. Differ. Equations, 251:2387–2408, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Russo and A. Tartaglione, On the Stokes problem with data in L 1, Z. Angew. Math. Phys., 64(4):1327–1336, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Russo and A. Tartaglione, On the Robin problem for the Stokes and the Navier–Stokes systems, Math. Models Methods Appl. Sci., 16:701–716, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  27. V.L. Shapiro, Isolated singularities for solutions of the nonlinear stationary Navier–Stokes equations, Trans. Am. Math. Soc., 187:335–363, 1974.

    Article  MATH  Google Scholar 

  28. V.L. Shapiro, A counterexample in the theory of planar viscous incompressible flow, J. Differ. Equations, 22:164–179, 1976.

    Article  MATH  Google Scholar 

  29. H. Sohr, The Navier–Stokes Equations: An Elementary Functional Analytic Approach, Birkhäuser, 2001.

  30. V. Šveràk, On Landau’s solutions of the Navier–Stokes equations, J. Math. Sci., New York, 179:208–228, 2011.

    Article  Google Scholar 

  31. A. Tartaglione, On the Stokes problem with slip boundary conditions, Commun. Appl. Ind. Math., 1:186–205, 2010.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Russo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, A., Tartaglione, A. On the existence of singular solutions of the stationary Navier–Stokes problem. Lith Math J 53, 423–437 (2013). https://doi.org/10.1007/s10986-013-9219-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-013-9219-3

MSC

Keywords

Navigation