Skip to main content
Log in

A fourth-order alternating-direction method for difference schemes with nonlocal condition*

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

We consider a finite-difference scheme of fourth-order accuracy for the two-dimensional Poisson equation in a rectangular domain with nonlocal integral conditions in one coordinate direction. The system of finite-difference equations is solved using a generalization of the Peaceman–Rachford alternating-direction implicit method. We prove the convergence of the method and estimate the rate of convergence by using the structure of the spectrum of one-dimensional difference operators with nonlocal integral conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.I. Bandyrskii, I. Lazurchak, V.L. Makarov, and M. Sapagovas, Eigenvalue problem for the second order differential equation with nonlocal conditions, Nonlinear Anal. Model. Control, 11(1):13–32, 2006.

    MATH  MathSciNet  Google Scholar 

  2. G.K. Berikelashvili, On the convergence rate of the finite-difference solution of a nonlocal boundary value problem for a second-order elliptic equation, Differ. Equ., 39(7):945–953, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Cahlon, D.M. Kulkarni, and P. Shi, Stepwise stability for the heat equation with a nonlocal constrain, SIAM J. Numer. Anal., 32(2):571–593, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Čiegis, Economical difference schemes for the solution of a two-dimensional parabolic problem with an integral condition, Differ. Equ., 41(7):1025–1029, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Čiegis, Parallel numerical algorithms for 3D parabolic problem with a non-local boundary condition, Informatica, 17(3):309–324, 2006.

    MATH  MathSciNet  Google Scholar 

  6. R. Čiupaila, Ž. Jesevičiūtė, and M. Sapagovas, On the eigenvalue problem for one-dimensional differential operator with nonlocal integral condition, Nonlinear Anal. Model. Control, 9(2):109–116, 2004.

    MATH  MathSciNet  Google Scholar 

  7. M. Dehghan, Locally explicit schemes for three-dimensional diffusion with non-local boundary specification, Appl. Math. Comput., 138((2-3)):489–501, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  8. D.G. Gordeziani, Solution Methods for a Class of Nonlocal Boundary Value Problems, Tbilisi, 1981 (in Russian).

  9. A.V. Gulin, N.I. Ionkin, and V.A. Morozova, Stability of a nonlocal two-dimensional finite-difference problem, Differ. Equ., 37(7):970–978, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  10. A.V. Gulin, N.I. Ionkin, and V.A. Morozova, Stability criterion of difference schemes for the heat conduction equation with nonlocal boundary conditions, Comput. Methods Appl. Math., 6(1):31–55, 2006.

    MATH  MathSciNet  Google Scholar 

  11. V.A. Il’in and E.I. Moiseev, Two-dimensional nonlocal boundary value problem for Poisson’s operator in differential and difference variants, Mat. Model., 2(8):132–156, 1990 (in Russian).

    MathSciNet  Google Scholar 

  12. Ž. Jesevičiūtė and M. Sapagovas, On the stability of finite-difference schemes for parabolic equations subject to integral conditions with applications to thermoelasticity, Comput. Methods Appl. Math., 8(4):360–373, 2008.

    MATH  Google Scholar 

  13. B. Noye and M. Dehghan, New explicit finite-difference schemes for two-dimensional diffusion subject specification of mass, Numer. Methods Partial Differential Equations, 15(4):521–534, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  14. D. Peaceman and J.H.H. Rachford, The numerical solution of parabolic and elliptic differential equations, J. Soc. Ind. Appl. Math., 1(3):28–41, 1955.

    MathSciNet  Google Scholar 

  15. S. Roman and A. Štikonas, Green’s functions for stationary problems with nonlocal boundary conditions, Lith. Math. J., 49(2):190–202, 2009.

    Article  Google Scholar 

  16. A.A. Samarskii, The Theory of Difference Schemes, Moscow, Nauka, 1977 (in Russian). English transl.: Marcel Dekker, Inc., New York, Basel, 2001.

    Google Scholar 

  17. A.A. Samarskii and E.S. Nikolaev, The Methods for Solution of Difference Equations, Moscow, Nauka, 1978 (in Russian).

    Google Scholar 

  18. M.P. Sapagovas, Difference scheme for two-dimensional elliptic problem with an integral condition, Lith. Math. J., 23(3):155–159, 1983.

    MATH  MathSciNet  Google Scholar 

  19. M.P. Sapagovas, Numerical methods for two-dimensional problem with nonlocal conditions, Differ. Equ., 20(7):1258–1266, 1984.

    MathSciNet  Google Scholar 

  20. M.P. Sapagovas, The solution of difference equations arising from differential problem with integral condition, in G.I. Marchuk (Ed.), Comput. Process and Systems, Nauka, Moscow, 1988, pp. 245–253 (in Russian).

    Google Scholar 

  21. M.P. Sapagovas, On the eigenvalue problem with a nonlocal condition, Differ. Equ., 38(7):1020–1026, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  22. M.P. Sapagovas, Difference method on increased order of accuracy for the Poisson equation with nonlocal conditions, Differ. Equ., 44(7):988–998, 2008.

    Article  MathSciNet  Google Scholar 

  23. M.P. Sapagovas, On stability of finite-difference schemes for nonlocal parabolic boundary value problems, Lith. Math. J., 48(3):339–356, 2008.

    Article  MathSciNet  Google Scholar 

  24. M.P. Sapagovas and R.J. Čiegis, The numerical solution of some nonlocal problems, Lith. Math. J., 27(2):348–356, 1987.

    MATH  Google Scholar 

  25. M.P. Sapagovas, G. Kairytė, O. Štikonienė, and A. Štikonas, Alternating direction method for a two-dimensional parabolic equation with a nonlocal boundary condition, Math. Model. Anal., 12(1):131–142, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  26. M.P. Sapagovas and A.D. Štikonas, On the structure of the spectrum of a differential operator with a nonlocal condition, Differ. Equ., 41(7):961–969, 2005.

    Article  MathSciNet  Google Scholar 

  27. M.P. Sapagovas, A.D. Štikonas, and O. Štikonienė, The Tshebyshev iterative method for problem with nonlocal condition, Liet. Mat. Rink., 44(Spec. Issue):665–669, 2004 (in Lithuanian).

    Google Scholar 

  28. A. Štikonas, The Sturm–Liouville problem with a nonlocal boundary condition, Lith. Math. J., 47(3):336–351, 2007.

    Article  Google Scholar 

  29. V.V. Voevodin and Yu.A. Kuznetsov, Matrices and Computations, Moscow, Nauka, 1984 (in Russian).

    MATH  Google Scholar 

  30. Y. Wang, Solutions to nonlinear elliptic equations with a nonlocal boundary condition, Electron. J. Differ. Equ., 2002(2):1–16, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sapagovas.

Additional information

*The research was partially supported by the Lithuanian State Science and Studies Foundation, grant No. T-73/09.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapagovas, M., Štikonienė, O. A fourth-order alternating-direction method for difference schemes with nonlocal condition*. Lith Math J 49, 309–317 (2009). https://doi.org/10.1007/s10986-009-9057-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10986-009-9057-5

Keywords

Navigation