Skip to main content
Log in

Flexible two-piece distributions for right censored survival data

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

An important complexity in censored data is that only partial information on the variables of interest is observed. In recent years, a large family of asymmetric distributions and maximum likelihood estimation for the parameters in that family has been studied, in the complete data case. In this paper, we exploit the appealing family of quantile-based asymmetric distributions to obtain flexible distributions for modelling right censored survival data. The flexible distributions can be generated using a variety of symmetric distributions and monotonic link functions. The interesting feature of this family is that the location parameter coincides with an index-parameter quantile of the distribution. This family is also suitable to characterize different shapes of the hazard function (constant, increasing, decreasing, bathtub and upside-down bathtub or unimodal shapes). Statistical inference is done for the whole family of distributions. The parameter estimation is carried out by optimizing a non-differentiable likelihood function. The asymptotic properties of the estimators are established. The finite-sample performance of the proposed method and the impact of censorship are investigated via simulations. Finally, the methodology is illustrated on two real data examples (times to weaning in breast-fed data and German Breast Cancer data).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aitken AC (2017) Determinants and Matrices. Read Books Ltd, Redditch, Worcestershire

    MATH  Google Scholar 

  • Bagnoli M, Bergstrom T (2005) Log-concave probability and its applications. Econ Theory 26(2):445–469

    Article  MATH  Google Scholar 

  • Bottai M, Zhang J (2010) Laplace regression with censored data. Biom J 52(4):487–503

    Article  MATH  Google Scholar 

  • Fernandez C, Steel MF (1999) Multivariate Student-t regression models: pitfalls and inference. Biom 86(1):153–167

    MATH  Google Scholar 

  • Gijbels I, Karim R, Verhasselt A (2019a) On quantile-based asymmetric family of distributions: properties and inference. Int Statistical Rev 87(3):471–504

    Article  Google Scholar 

  • Gijbels I, Karim R, Verhasselt A (2019b) Quantile estimation in a generalized asymmetric distributional setting. In: Steland A, Rafajlowicz E, Okhrin O (eds) Stochastic models, statistics and their applications. Springer, Dresden, Germany, pp 13–40

    Chapter  Google Scholar 

  • Gupta RD, Kundu D (2001) Exponentiated exponential family: an alternative to Gamma and Weibull distributions. Biom J 43(1):117–130

    Article  MATH  Google Scholar 

  • Hougaard P (1999) Fundamentals of survival data. Biometrics 55(1):13–22

    Article  MATH  Google Scholar 

  • Huber PJ (1967) The behavior of maximum likelihood estimates under nonstandard conditions. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 5, pp 221–233

  • Khan SA, Khosa SK (2016) Generalized log-logistic proportional hazard model with applications in survival analysis. J Statist Distrib Appl 3(1):1–18

    Article  MATH  Google Scholar 

  • Klein JP, Moeschberger ML (2006) Survival analysis: techniques for censored and truncated data. Springer Science and Business Media, New York

    MATH  Google Scholar 

  • Lan Y, Leemis LM (2008) The logistic-exponential survival distribution. Naval Res Logist 55(3):252–264

    Article  MATH  Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, Hoboken, New Jersey

    MATH  Google Scholar 

  • Liao JJ, Liu GF (2019) A flexible parametric survival model for fitting time to event data in clinical trials. Pharm Statist 18(5):555–567

    Article  Google Scholar 

  • Marshall AW, Olkin I (1997) A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrics 84(3):641–652

    Article  MATH  Google Scholar 

  • Meeker WQ, Escobar LA (2014) Statistical methods for reliability data. Wiley, Hoboken, New Jersey

    MATH  Google Scholar 

  • Mudholkar GS, Srivastava DK (1993) Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans Reliab 42(2):299–302

    Article  MATH  Google Scholar 

  • Mudholkar GS, Srivastava DK, Freimer M (1995) The exponentiated Weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37(4):436–445

    Article  MATH  Google Scholar 

  • Nassiri V, Loris I (2013) A generalized quantile regression model. J Appl Statist 40(5):1090–1105

    Article  MATH  Google Scholar 

  • Nelson W (1982) Appl Life Data Anal. Wiley, Hoboken, New Jersey

    Book  Google Scholar 

  • Pal M, Ali MM, Woo J (2006) Exponentiated Weibull distribution. Statistica (Bologna) 66(2):139–147

    MATH  Google Scholar 

  • Reed WJ (2011) A flexible parametric survival model which allows a bathtub-shaped hazard rate function. J Appl Statist 38(8):1665–1680

    Article  MATH  Google Scholar 

  • Rubio FJ, Hong Y (2016) Survival and lifetime data analysis with a flexible class of distributions. J Appl Statist 43(10):1794–1813

    Article  MATH  Google Scholar 

  • Sauerbrei W, Royston P, Bojar H, Schmoor C, Schumacher M (1999) Modelling the effects of standard prognostic factors in node-positive breast cancer. Br J Cancer 79(11):1752

    Article  Google Scholar 

  • Schumacher M, Bastert G, Bojar H, Huebner K, Olschewski M, Sauerbrei W, Rauschecker HF (1994) Randomized 2 x 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German Breast Cancer Study Group. J Clin Oncol 12(10):2086–2093

    Article  Google Scholar 

  • Slymen DJ, Lachenbruch PA (1984) Survival distributions arising from two families and generated by transformations. Commun Statist-Theory Methods 13(10):1179–1201

    Article  Google Scholar 

  • Su S (2016) Flexible modelling of survival curves for censored data. J Statist Distrib Appl 3(1):1–20

    Article  Google Scholar 

  • Vallejos CA, Steel MF (2015) Objective Bayesian survival analysis using shape mixtures of log-normal distributions. J Am Statist Assoc 110(510):697–710

    Article  MATH  Google Scholar 

  • Van der Vaart AW (2000) Asymptotic statistics. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editor, and associate editor and reviewers for their valuable comments that led to an improvement of the manuscript. The second author gratefully acknowledge support from Research Grant FWO G0D6619N of the Flemish Science Foundation, and from the C16/20/002 project of the Research Fund KU Leuven.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anneleen Verhasselt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Appendices

Appendix A Proofs of Theorems 2.1 and 2.2 (basic properties)

1.1 A.1 Proof of Theorem 2.1

For \(t< \eta \), we can write

$$\begin{aligned} F_{\alpha }(t;\eta ,\phi )&=\int _{-\infty }^{t}f_{\alpha }(s;\eta ,\phi )ds \\&=\frac{2\alpha (1-\alpha )}{\phi } \int _{0}^{t} g'(s)f_{0}\left\{ (1-\alpha )\left( \frac{g(\eta )-g(s)}{\phi }\right) \right\} ds, \qquad \text{ since }~ s> 0\\&= 2\alpha F_{0}\left\{ (1-\alpha )\left( \frac{g(t)-g(\eta )}{\phi }\right) \right\} , \end{aligned}$$

where we used a change of variable \(z=(1-\alpha )\left( \frac{g(\eta )-g(s)}{\phi }\right) .\) Similarly, for \(t\ge \eta \), we have

$$\begin{aligned} F_{\alpha }(t;\eta , \phi )&=\int _{-\infty }^{t}f_{\alpha }(s;\eta , \phi )ds = \int _{0}^{\eta }f_{\alpha }(s;\eta , \phi )ds + \int _{\eta }^{t}f_{\alpha }(s;\eta , \phi )ds \\&=\frac{2\alpha (1-\alpha )}{\phi } \bigg [\int _{0}^{\eta } g'(s)f_{0}\left\{ (1-\alpha )\left( \frac{g(\eta )-g(s)}{\phi }\right) \right\} ds\\&\quad +\int _{\eta }^{t}g'(s)f_{0}\left\{ \alpha \left( \frac{g(s)-g(\eta )}{\phi }\right) \right\} ds \bigg ] \\&=2\alpha -1+2(1-\alpha )F_{0}\left\{ \alpha \left( \frac{g(t)-g(\eta )}{\phi }\right) \right\} ,~ \text {through a change of variable}\\ z&=\alpha \left( \frac{g(s)-g(\eta )}{\phi }\right) \end{aligned}$$

Finally, the quantile function of T for any quantile order \(\uptau \in (0,1)\) given in (2.3) is the inverse of \(F_{\alpha }(t;\eta , \phi )\). \(\square \)

1.2 A.2 Proof of Theorem 2.2

For the survival function given in Theorem 2.2 (i), we use that \(S_{\alpha }(t)=P(T>t)=1-F_{\alpha }(T\le t)\). Considering this together with the property that \(S_{0}(z)+S_{0}(-z)=1\), we can write for \(t< \eta \)

$$\begin{aligned} \begin{aligned} S_{\alpha }(t;\eta ,\phi )= 1-2\alpha S_{0}\left\{ (1-\alpha )\left( \frac{g(\eta )-g(t)}{\phi }\right) \right\} , \end{aligned} \end{aligned}$$

and for \(t\ge \eta \), we have

$$\begin{aligned} \begin{aligned} S_{\alpha }(t;\eta , \phi )=2(1-\alpha )S_{0}\left\{ \alpha \left( \frac{g(t)-g(\eta )}{\phi }\right) \right\} . \end{aligned} \end{aligned}$$

Now, the hazard function for the random variable T is defined by the ratio of the probability density function and the corresponding survival function. Thus,

$$\begin{aligned} \begin{aligned} h_{\alpha }(t;\eta , \phi )&=\displaystyle \frac{f_{\alpha }(t;\eta , \phi )}{S_{\alpha }(t; \eta , \phi )} \\&=\displaystyle \frac{\alpha g'(t)}{\phi }\left\{ \begin{array}{ll} \displaystyle \frac{ 2(1-\alpha ) h_{0}\left[ (1-\alpha )\left( \frac{g(\eta )-g(t)}{\phi }\right) \right] S_{0}\left[ (1-\alpha )\left( \frac{g(\eta )-g(t)}{\phi }\right) \right] }{1-2\alpha S_{0}\left[ (1-\alpha )\left( \frac{g(\eta )-g(t)}{\phi }\right) \right] } &{} \text{ if }\, t<\eta \\ \displaystyle h_{0}\left[ \alpha \left( \frac{g(t)-g(\eta )}{\phi }\right) \right] &{}~ \text{ if }\, t\ge \eta , \end{array} \right. \end{aligned} \end{aligned}$$

where \(h_{0}\) is the hazard rate function for the underlying distribution with density \(f_{0}\). Finally, to prove Theorem 2.2 (iii) we start from the definition of the cumulative hazard function, and find

$$\begin{aligned} \begin{aligned} \varLambda _{\alpha }(t;\eta , \phi )&= \displaystyle \int _{0}^{t}h_{\alpha }(s)ds= -\ln S_{\alpha }(t;\eta , \phi )\\&= \displaystyle \left\{ \begin{array}{ll} \displaystyle -\ln \left\{ 1-2\alpha S_{0}\left[ (1-\alpha )\left( \frac{g(\eta )-g(t)}{\phi }\right) \right] \right\} &{} \text{ if }\, t<\eta \\ \displaystyle -\ln [2(1-\alpha )] + \varLambda _{0}\left[ \alpha \left( \frac{g(t)-g(\eta )}{\phi }\right) \right] &{}~ \text{ if }\, t\ge \eta , \end{array} \right. \end{aligned} \end{aligned}$$

where \(\varLambda _{0}(.)\) is the cumulative hazard function associated with the density \(f_{0}\). \(\square \)

Appendix B Proofs of Theorems 3.1 and 3.2

1.1 B.1 Proof of Theorem 3.1 (consistency)

Since the likelihood function is not differentiable with respect to \(\eta \) at \(\eta =y_{i}\) for all \(i=1,\cdots , n\), the GQBA family does not satisfy the usual regularity conditions to prove the asymptotic properties of MLEs. Huber (1967) established the consistency and asymptotic normality of any sequence of estimators under nonstandard conditions. We here follow Huber’s method in the right censored data case. Since we assumed independent censoring with non-informative censoring mechanism, we do not have identifiability issues between survival and censoring time distributions. Let \((\varOmega , \mathcal {F}, \mathcal {P})\) be a probability space of \((Y, \varDelta )\) with \(\varOmega = \mathbb {R}^{+}_{0}\times \{0,1\}\) and \(\varvec{\varPsi }(\varvec{\theta };Y, \varDelta ) \) be a vector of the score function on \({\varvec{\varTheta }}_{R}\times \varOmega \) given as

$$\begin{aligned} \begin{aligned} \varvec{\varPsi }(\varvec{\theta };Y, \varDelta )= \begin{bmatrix} \psi _{1}(\varvec{\theta };Y, \varDelta ) \\ \psi _{2}(\varvec{\theta };Y, \varDelta ) \\ \psi _{3}(\varvec{\theta };Y, \varDelta ) \end{bmatrix}&= \begin{bmatrix} \frac{1}{2}\bigg (\frac{\partial }{\partial \eta ^{{\varvec{-}}}}\ell (\varvec{\theta }; Y, \varDelta ) + \frac{\partial }{\partial \eta ^{+}}\ell (\varvec{\theta }; Y, \varDelta )\bigg )\\ \frac{\partial }{\partial \phi }\ell (\varvec{\theta };Y, \varDelta )\\ \frac{\partial }{\partial \alpha }\ell (\varvec{\theta }; Y, \varDelta ) \end{bmatrix}, \end{aligned} \end{aligned}$$

where \(\frac{\partial }{\partial \eta ^{-}}\ell (\varvec{\theta }; Y, \varDelta )\) and \( \frac{\partial }{\partial \eta ^{+}}\ell (\varvec{\theta }; Y, \varDelta )\) denote the left-hand and right-hand derivative with respect to \(\eta \), respectively. The aim is to prove the convergence of any sequence \({\varvec{\widehat{\theta }}}_{n}\) such that

$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\varvec{\varPsi }( \widehat{\varvec{\theta }}_{n};Y_{i}, \varDelta _{i})\xrightarrow {\text {a.s}} \varvec{0}, \end{aligned}$$

converges almost surely to \(\varvec{\theta }_{0}\). We want to give sufficient conditions for the assumptions that have been established in Theorem 2 of Huber (1967, pp. 224–225). Sufficient conditions such that Huber’s assumptions for the consistency of the estimator \(\widehat{{\varvec{\theta }}}_{n}\) hold, are:

(H-1).:

For each fixed \({\varvec{\theta }}\in {\varvec{\varTheta }}_{R}, ~ {\varvec{\varPsi }}(\varvec{\theta };Y, \varDelta ) \) is \(\varOmega \)-measurable and separable.

(H-3).:

The expected value \(\lambda (\varvec{\theta })=\mathrm {E}_{Y, \varDelta }\big [\varvec{\varPsi }( \varvec{\theta };Y,\varDelta )\big ]\) exists for all \({\varvec{\theta }}\in {\varvec{\varTheta }}_{R}\), and has a unique zero at \({\varvec{\theta }}={\varvec{\theta }}_{0}\).

(H-2\(^\prime \)).:

As the neighbourhood \(U_{\theta }\) of \({\varvec{\theta }}\) shrinks to \(\{{\varvec{\theta }}_{0}\}\)

$$\begin{aligned} \mathrm {E}_{Y, \varDelta }\big \{{u( \varvec{\theta }; Y, \varDelta )}\big \}\rightarrow \varvec{0}, \end{aligned}$$

where \(u(\varvec{\theta }; Y, \varDelta )=\underset{\varvec{\theta }_{0}\in U_{\theta }}{\text {sup}}\Vert \varvec{\varPsi }(\varvec{\theta }_{0};Y, \varDelta )-\varvec{\varPsi }(\varvec{\theta }; Y, \varDelta )\Vert \), \(\Vert \cdot \Vert \) denotes Euclidean norm.

We can prove (H-1) by imposing Assumption (B1), in that we have \({\varvec{\varTheta }}_{R}\) as a compact subset of the parameter space \({\varvec{\varTheta }}\). It is also well known that a compact space is totally bounded and complete. We also know that a compact space is separable (Van der Vaart 2000). Furthermore, the score function \(\varvec{\varPsi }(\varvec{\theta };Y, \varDelta )\) is a function of \({\varvec{\theta }}\) in a compact space \({\varvec{\varTheta }}_{R}\), and it also depends on the random variables Y and \(\varDelta \); hence separability is achieved here. Note that, \(\varvec{\varPsi }(\varvec{\theta };Y, \varDelta )\) is a measurable function of \((Y, \varDelta )\) for each \({\varvec{\theta }}\) since it is established from a joint probability distribution defined on the measure space \((\varOmega , \mathcal {F}, \mathcal {P})\).

For the second assumption (H-3), we first need to check the identifiability of the parameters, i.e., for \(\varvec{\theta }\ne \varvec{\theta }_{0}\), we need to ensure that \( \ell (\varvec{\theta }; y, \delta )\ne \ell (\varvec{\theta }_{0};y, \delta )\). We have that \(\exp \big (\ell (\varvec{\theta }_{0};y, \delta =1)\big )=f_{\alpha _{0}}(y; \varvec{\theta }_{0})\) and \(\exp \big (\ell (\varvec{\theta }_{0};y, \delta =0)\big )=S_{\alpha _{0}}(y;\varvec{\theta }_{0})\equiv 1-F_{\alpha _{0}}(y;\varvec{\theta }_{0})\). In the complete data analysis, Gijbels et al. (2019a) proved the identifiability issue by comparing the mode value in \(f_{\alpha }(y;\varvec{\theta })\) and \(f_{\alpha _{0}}(y;\varvec{\theta }_{0})\). Consider \(f_{\alpha }(y;\varvec{\theta })=f_{\alpha _{0}}(y;\varvec{\theta }_{0})\), which shows that both densities have the same mode \(\eta =\eta _{0}\), since each distribution of GQBA family is unimodal at \(\eta \). Moreover, \(f_{\alpha }(y;\varvec{\theta })=f_{\alpha _{0}}(y;\varvec{\theta }_{0})\) implies \(S_{\alpha }(y;\varvec{\theta })=S_{\alpha _{0}}(y;\varvec{\theta }_{0})\) and also \(\alpha =F_{\alpha }(\eta )=F_{\alpha _{0}}(\eta _{0}))=\alpha _{0}\), which indicates that \(\alpha =\alpha _{0}\). Therefore, \(f_{\alpha }(\eta ; \varvec{\theta })=f_{\alpha _{0}}(\eta _{0}; \varvec{\theta }_{0})\) with \(\eta =\eta _{0}\), and \(\phi =\phi _{0}\). Hence, the identifiability of the parameters holds, i.e., \(\varvec{\theta }=\varvec{\theta }_{0}\). In other words, \(\varvec{\theta }\ne \varvec{\theta }_{0}\Rightarrow \ell (\varvec{\theta }; y, \delta )\ne \ell (\varvec{\theta }_{0};y, \delta )\).

The second condition (H-3) we first should check is the existence of the expected score function. Under Assumptions (B2)–(B5) we have a finite expected value of the score function as stated in Proposition 3.1; hence \(\lambda (\varvec{\theta })\) exists for all \(\varvec{\theta }\in {\varvec{\varTheta }}_{R}\), and has a unique zero at \(\varvec{\theta }=\varvec{\theta }_{0}\).

For the last assumption (H-2\(^\prime \)) we know that \(u(\varvec{\theta }; Y, \varDelta )\) is a continuous function in  \(\varvec{\theta }\), and \(\varvec{\theta }\) belongs to a compact set \({\varvec{\varTheta }}_{R}\). Hence, \(u( \varvec{\theta }; Y, \varDelta )\) is bounded on \({\varvec{\varTheta }}_{R}\). It is also immediate from (H-2\(^\prime \)) that \(\lambda ({\varvec{\theta }})\) is continuous. \(\square \)

1.2 B.2 Proof of Theorem 3.2 (asymptotic normality)

Similar to the consistency, we also established the asymptotic normality using the conditions of Theorem 3 in Huber (1967, pp. 226–227). Huber provides sufficient conditions which assure that every sequence of \(\widehat{{\varvec{\theta }}}_{n}\) satisfying

$$\begin{aligned} \frac{1}{\sqrt{n}}\sum _{i=1}^{n}{\varvec{\varPsi }}( \widehat{{\varvec{\theta }}}_{n};Y_{i}, \varDelta _{i})\xrightarrow {P} {\varvec{0}}, \end{aligned}$$

is asymptotically normal.

  1. (N-1).

    For each fixed \({\varvec{\theta }}\in {\varvec{\varTheta }}_{R}, ~ {\varvec{\varPsi }}({\varvec{\theta }};Y, \varDelta ) \) is \(\varOmega \)-measurable and separable.

  2. (N-2).

    There is a \({\varvec{\theta }}_{0}\in \mathring{{\varvec{\varTheta }}}_{R}\) such that \(\lambda ({\varvec{\theta }}_{0})={\varvec{0}}\).

  3. (N-3).

    There are strictly positive numbers \(a, b, c, d_{0}\) such that

    1. (i)

      \(\Vert \lambda ({\varvec{\theta }})\Vert \ge a\Vert {\varvec{\theta }}-{\varvec{\theta }}_{0}\Vert \)            for  \(\Vert {\varvec{\theta }}-{\varvec{\theta }}_{0}\Vert \le d_{0}\),

    2. (ii)

      \(\mathrm {E}_{Y, \varDelta }\big [u(Y,\varDelta , {\varvec{\theta }}, d)\big ]\le bd\)        for  \(\Vert {\varvec{\theta }}-{\varvec{\theta }}_{0}\Vert +d\le d_{0}\),       \(d\ge 0\),

    3. (iii)

      \(\mathrm {E}_{Y, \varDelta }\big [u(Y,\varDelta , {\varvec{\theta }}, d)^2\big ]\le cd\)       for  \(\Vert {\varvec{\theta }}-{\varvec{\theta }}_{0}\Vert +d\le d_{0}\),       \(d\ge 0\).

    Where we define \(u(Y,\varDelta , {\varvec{\theta }}, d)=\underset{\Vert {\varvec{\theta }}-{\varvec{\theta }}_{0}\Vert \le d}{\text {sup}}\Vert {\varvec{\varPsi }}({\varvec{\theta }}; Y, \varDelta )-{\varvec{\varPsi }}({\varvec{\theta }}_{0}; Y, \varDelta )\Vert \) for \({\varvec{\theta }}_{0}\in \mathring{{\varvec{\varTheta }}}_{R}\).

  4. (N-4).

    The expectation \(\mathrm {E}_{Y, \varDelta }\big [||{\varvec{\varPsi }}({\varvec{\theta }}_{0};Y, \varDelta )||^2\big ]\) is finite.

Note that the first assumption (N-1) is the same as (H-1) in the consistency part, and already proved in Sect. B.1. Furthermore, for the second assumption (N-2), we already proved that \(\lambda ({\varvec{\theta }})\) exists for all \({\varvec{\theta }}\in {\varvec{\varTheta }}_{R}\) in Proposition 3.1, and has a unique zero at \({\varvec{\theta }}={\varvec{\theta }}_{0}\) in (H-3) of Huber (1967). Since \( \mathring{{\varvec{\varTheta }}}_{R}\) is an interior of \({\varvec{\varTheta }}_{R}\) and the expectations are always taken with respect to the true distributions \(F_{\alpha _{0}}(y;\eta _{0}, \phi _{0})\) and G(.), we find that \(\lambda ({\varvec{\theta }}_{0})={\varvec{0}}\).

The last two assumptions (N-3) and (N-4) involve the existence of the Fisher information matrix. Condition (N-4) holds, i.e., \(\mathrm {E}_{Y, \varDelta }\big [||{\varvec{\varPsi }}({\varvec{\theta }}_{0};Y, \varDelta )||^2\big ]<\infty \), since

$$\begin{aligned} \begin{aligned} \mathrm {E}_{Y, \varDelta }\big [||{\varvec{\varPsi }}({\varvec{\theta }}_{0};Y, \varDelta )||^2\big ]&=\mathrm {E}_{Y, \varDelta }\big \{\big [{\varvec{\varPsi }}({\varvec{\theta }}_{0};Y, \varDelta )\big ]\big [{\varvec{\varPsi }}({\varvec{\theta }}_{0};Y, \varDelta )\big ]^{\scriptscriptstyle T}\big \}\\&=\text {Trace}[{\varvec{\mathcal {I}}}({\varvec{\theta }}_{0})]<\infty . \end{aligned} \end{aligned}$$

To prove (N-3), a Taylor expansion for \(\lambda ({\varvec{\theta }})\) at the point \({\varvec{\theta }}_{0}\) has been used in Gijbels et al. (2019a). The interesting expression in this sense is that since \(\lambda ({\varvec{\theta }})\) is continuously differentiable in any neighbourhood of \({\varvec{\theta }}_{0}\), and hence

$$\begin{aligned} \lambda ({\varvec{\theta }}) =\lambda ({\varvec{\theta }}_{0}) -{\varvec{\mathcal {I}}}({\varvec{\theta }}_{0}) ({\varvec{\theta }}-{\varvec{\theta }}_{0})+o\big (\Vert {\varvec{\theta }}-{\varvec{\theta }}_{0}\Vert \big ). \end{aligned}$$

For further details, see the reference above. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewnetu, W.B., Gijbels, I. & Verhasselt, A. Flexible two-piece distributions for right censored survival data. Lifetime Data Anal 29, 34–65 (2023). https://doi.org/10.1007/s10985-022-09574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-022-09574-4

Keywords

Navigation