Skip to main content
Log in

Two new defective distributions based on the Marshall–Olkin extension

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

The presence of immune elements (generating a fraction of cure) in survival data is common. These cases are usually modeled by the standard mixture model. Here, we use an alternative approach based on defective distributions. Defective distributions are characterized by having density functions that integrate to values less than \(1\), when the domain of their parameters is different from the usual one. We use the Marshall–Olkin class of distributions to generalize two existing defective distributions, therefore generating two new defective distributions. We illustrate the distributions using three real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aalen O, Borgan O, Gjessing H (2008) Survival and event history analysis: a process point of view. Springer, New York

    Book  MATH  Google Scholar 

  • Aalen OO, Gjessing HK (2001) Understanding the shape of the hazard rate: a process point of view (with comments and a rejoinder by the authors). Stat Sci 16(1):1–22

    MathSciNet  MATH  Google Scholar 

  • Alice T, Jose KK (2003) Marshall–Olkin pareto processes. Far East J Theor Stat 9(2):117–132

    MathSciNet  MATH  Google Scholar 

  • Alice T, Jose KK (2005) Marshall–Olkin logistic processes. STARS Int J 6:1–11

    Google Scholar 

  • Balka J, Desmond AF, McNicholas PD (2009) Review and implementation of cure models based on first hitting times for wiener processes. Lifetime Data Anal 15(2):147–176

    Article  MathSciNet  MATH  Google Scholar 

  • Balka J, Desmond AF, McNicholas PD (2011) Bayesian and likelihood inference for cure rates based on defective inverse gaussian regression models. J Appl Stat 38(1):127–144

    Article  MathSciNet  Google Scholar 

  • Barreto-Souza W, Lemonte AJ, Cordeiro GM (2013) General results for the marshall and olkin’s family of distributions. Anais da Academia Brasileira de Ciências 85(1):3–21

    Article  MathSciNet  MATH  Google Scholar 

  • Berkson J, Gage RP (1952) Survival curve for cancer patients following treatment. J Am Stat Assoc 47(259):501–515

    Article  Google Scholar 

  • Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J R Stat Soc Ser B (Methodol) 11(1):15–53

    MATH  Google Scholar 

  • Cantor AB, Shuster JJ (1992) Parametric versus non-parametric methods for estimating cure rates based on censored survival data. Stat Med 11(7):931–937

    Article  Google Scholar 

  • Chen MH, Ibrahim JG, Sinha D (1999) A new bayesian model for survival data with a surviving fraction. J Am Stat Assoc 94(447):909–919

    Article  MathSciNet  MATH  Google Scholar 

  • Cordeiro GM, Lemonte AJ (2013) On the Marshall–Olkin extended weibull distribution. Stat Papers 54(2):333–353

    Article  MathSciNet  MATH  Google Scholar 

  • Gieser PW, Chang MN, Rao PV, Shuster JJ, Pullen J (1998) Modelling cure rates using the gompertz model with covariate information. Stat Med 17(8):831–839

    Article  Google Scholar 

  • Haybittle JL (1959) The estimation of the proportion of patients cured after treatment for cancer of the breast. Br J Radiol 32(383):725–733

    Article  Google Scholar 

  • Ibrahim JG, Chen MH, Sinha D (2005) Bayesian survival analysis. Wiley Online Library, New York

    Book  MATH  Google Scholar 

  • Jose KK, Krishna E (2011) Marshall–Olkin extended uniform distribution. Probab Stat Optim 4:78–88

    MathSciNet  MATH  Google Scholar 

  • Kersey JH, Weisdorf D, Nesbit ME, LeBien TW, Woods WG, McGlave PB, Kim T, Vallera DA, Goldman AI, Bostrom B (1987) Comparison of autologous and allogeneic bone marrow transplantation for treatment of high-risk refractory acute lymphoblastic leukemia. N Engl J Med 317(8):461–467

    Article  Google Scholar 

  • Klein JP, Moeschberger ML (2003) Survival analysis: statistical methods for censored and truncated data. Springer, New York

    MATH  Google Scholar 

  • Laurie JA, Moertel CG, Fleming TR, Wieand HS, Leigh JE, Rubin J, McCormack GW, Gerstner JB, Krook JE, Malliard J (1989) Surgical adjuvant therapy of large-bowel carcinoma: an evaluation of levamisole and the combination of levamisole and fluorouracil. the north central cancer treatment group and the mayo clinic. J Clin Oncol 7(10):1447–1456

    Google Scholar 

  • Lee MLT, Whitmore GA (2004) First hitting time models for lifetime data. Handb Stat 23:537–543

    Article  MathSciNet  Google Scholar 

  • Lee MLT, Whitmore GA (2006) Threshold regression for survival analysis: modeling event times by a stochastic process reaching a boundary. Stat Sci 21(4):501–513

    Article  MathSciNet  MATH  Google Scholar 

  • Marshall AW, Olkin I (1997) A new method for adding a parameter to a family of distributions with application to the exponential and weibull families. Biometrika 84(3):641–652

    Article  MathSciNet  MATH  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Schrödinger E (1915) Zur theorie der fall-und steigversuche an teilchen mit brownscher bewegung. Phys Z 16:289–295

    Google Scholar 

  • Tweedie MCK (1945) Inverse statistical variates. Nature 155(3937):453–453

    Article  MathSciNet  MATH  Google Scholar 

  • Whitmore GA (1979) An inverse gaussian model for labour turnover. J R Stat Soc Ser A (Gener) 142(4):468–478

    Article  Google Scholar 

  • Whitmore GA, Crowder MJ, Lawless JF (1998) Failure inference from a marker process based on a bivariate wiener model. Lifetime Data Anal 4(3):229–251

    Article  MATH  Google Scholar 

  • Yakovlev AY, Tsodikov AD (1996) Stochastic models of tumor latency and their biostatistical applications, vol 1. World Scientific, Singapore

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil) for financial support during the course of this project. The authors also thank the Associate Editor and the two referees for carefully reading and for comments which greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, R., Nadarajah, S., Tomazella, V. et al. Two new defective distributions based on the Marshall–Olkin extension. Lifetime Data Anal 22, 216–240 (2016). https://doi.org/10.1007/s10985-015-9328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-015-9328-x

Keywords

Navigation