Skip to main content
Log in

An information-theoretic approach to surrogate-marker evaluation with failure time endpoints

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

Over the last decades, the evaluation of potential surrogate endpoints in clinical trials has steadily been growing in importance, not only thanks to the availability of ever more potential markers and surrogate endpoints, also because more methodological development has become available. While early work has been devoted, to a large extent, to Gaussian, binary, and longitudinal endpoints, the case of time-to-event endpoints is in need of careful scrutiny as well, owing to the strong presence of such endpoints in oncology and beyond. While work had been done in the past, it was often cumbersome to use such tools in practice, because of the need for fitting copula or frailty models that were further embedded in a hierarchical or two-stage modeling approach. In this paper, we present a methodologically elegant and easy-to-use approach based on information theory. We resolve essential issues, including the quantification of “surrogacy” based on such an approach. Our results are put to the test in a simulation study and are applied to data from clinical trials in oncology. The methodology has been implemented in R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso A, Molenberghs G (2007) Surrogate marker evaluation from an information theory perspective. Biometrics 63: 180–186

    Article  MATH  MathSciNet  Google Scholar 

  • Alonso A, Molenberghs G (2008) Evaluating time to cancer recurrence as a surrogate marker for survival from an information theory perspective. Stat Methods Med Res 17: 497–504

    Article  MathSciNet  Google Scholar 

  • Alonso A, Molenberghs G, Burzykowski T, Renard D, Geys H, Shkedy Z, Tibaldi F, Cortiñas J, Buyse M (2004) Prentice’s approach and the meta-analytic paradigm: a reflection on the role of statistics in the evaluation of surrogate endpoints. Biometrics 60: 724–728

    Article  MATH  MathSciNet  Google Scholar 

  • Alonso A, Molenberghs G, Geys H, Buyse M (2005) A unifying approach for surrogate marker validation based on Prentice’s criteria. Stat Med 25: 205–211

    Article  MathSciNet  Google Scholar 

  • Alonso A, Geys H, Molenberghs G (2006) A unifying approach for surrogate marker validation based on Prentices criteria. Stat Med 25: 205–221

    Article  MathSciNet  Google Scholar 

  • Boltzmannn L (1877) Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respecktive den Sätzen über das Wärmegleichgewicht (On the relationship between the second law of the mechanical theory of heat and the probability calculus). Wiener Berichte 2: 373–435

    Google Scholar 

  • Burzykowski T, Molenberghs G, Buyse M, Renard D, Geys H (2001) Validation of surrogate endpoints in multiple randomized clinical trials with failure-time endpoints. Appl Stat 50: 405–422

    MATH  MathSciNet  Google Scholar 

  • Burzykowski T, Molenberghs G, Buyse M (2005) The Evaluation of surrogate endpoints. Springer, New York

    Book  MATH  Google Scholar 

  • Buyse M, Molenberghs G, Burzykowski T, Renard D, Geys H (2000) The validation of surrogate endpoints in meta-analyses of randomized experiments. Biostatistics 1: 49–67

    Article  MATH  Google Scholar 

  • Cardiac Arrhythmia Suppression Trial (CAST) Investigators: (1989) Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infraction. N Engl J Med 321: 406–412

    Article  Google Scholar 

  • Clayton DG (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65: 41–151

    Article  MathSciNet  Google Scholar 

  • Cover T, Tomas J (1991) Elements of information theory. Wiley, New York

    Book  MATH  Google Scholar 

  • Cox DR (1972) Regression models and life tables (with discussion). J R Stat Soc B 34: 187–220

    MATH  Google Scholar 

  • Cox DR (1975) Partial likelihood. Biometrika 62: 269–276

    Article  MATH  MathSciNet  Google Scholar 

  • Cox DR, Oakes D (1984) Analysis of survival data. Chapman and Hall, London

    Google Scholar 

  • Daniels MJ, Hughes MD (1997) Meta-analysis for the evaluation of potential surrogate markers. Stat Med 16: 1515–1527

    Article  Google Scholar 

  • DeGruttola V, Fleming TR, Lin DY, Coombs R (1997) Validating surrogate markers—are we being naive?. J Infect Dis 175: 237–246

    Google Scholar 

  • Duchateau L, Janssen P (2007) The Frailty Model. Springer, New York

    Google Scholar 

  • Dunn N, Mann RD (1999) Prescription-event and other forms of epidemiological monitoring of side-effects in the UK. Clin Exp Allergy 29: 217–239

    Article  Google Scholar 

  • Fisher R (1925) Theory of statistical estimation. Proc Camb Philos Soc 22: 700–725

    Article  MATH  Google Scholar 

  • Fleming TR, DeMets DL (1996) Surrogate endpoints in clinical trials: are we being misled?. Ann Intern Med 125: 605–613

    Google Scholar 

  • Freedman LS, Graubard BI, Schatzkin A (1992) Statistical validation of intermediate endpoints for chronic diseases. Stat Med 11: 167–178

    Article  Google Scholar 

  • Hartley R (1928) Transmission of information. Bell Syst Tech J 7: 535–563

    Google Scholar 

  • Henderson R, Diggle P, Dobson A (2000) Joint modelling of longitudinal measurements and event time data. Biostatistics 1: 465–480

    Article  MATH  Google Scholar 

  • Hougaard P (2000) Analysis of multivariate survival data. Springer, New York

    MATH  Google Scholar 

  • Kalbfleisch J, Prentice RL (1980) The statistical analysis of failure time data. Wiley, New York

    MATH  Google Scholar 

  • Kaplan EL, Meier P (1958) Non-parametric estimation from incomplete observations. J Am Stat Assoc 53: 457–481

    Article  MATH  MathSciNet  Google Scholar 

  • Kent J (1983) Information gain and a general measure of correlation. Biometrika 70: 163–173

    Article  MATH  MathSciNet  Google Scholar 

  • Kent J (1986) The underlying structure of nonnested hypothesis tests. Biometrika 73: 333–344

    Article  MATH  MathSciNet  Google Scholar 

  • Kent J, O’Quigley J (1988) Measure of dependence for censored survival data. Biometrika 75: 525–534

    Article  MATH  MathSciNet  Google Scholar 

  • Kullback S, Leibler R (1951) On information and sufficiency. Ann Math Stat 22: 79–86

    Article  MATH  MathSciNet  Google Scholar 

  • Lagakos SW, Hoth DF (1992) Surrogate markers in AIDS: where are we? Where are we going?. Ann Intern Med 116: 599–601

    Google Scholar 

  • Lesko LJ, Atkinson AJ (2001) Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol 41: 347–366

    Article  Google Scholar 

  • Molenberghs G, Kenward MG (2007) Missing data in clinical studies. Wiley, Chichester

    Book  Google Scholar 

  • Molenberghs G, Burzykowski T, Alonso A, Assam P, Tilahun A, Buyse M (2008) The meta-analytic framework for the evaluation of surrogate endpoints in clinical trials. J Stat Plan Inference 138: 432–449

    Article  MATH  MathSciNet  Google Scholar 

  • Nelson RG (1999) An introduction to Copulas. Lecture Notes in Statistics, vol 139. Springer, New York

    Google Scholar 

  • Nyquist H (1924) Certain factors affecting telegraph speed. Bell Syst Tech J 3: 324–346

    Google Scholar 

  • O’Quigley J (2008) Proportional hazards regression. Springer, New York

    Book  MATH  Google Scholar 

  • O’Quigley J, Flandre P (2006) Quantification of the Prentice criteria for surrogate endpoints. Biometrics 64: 297–300

    Article  MathSciNet  Google Scholar 

  • O’Quigley J, Xu R, Stare J (2005) Explained randomness in proportional hazards models. Stat Med 24: 479–489

    Article  MathSciNet  Google Scholar 

  • Prentice RL (1989) Surrogate endpoints in clinical trials: definitions and operational criteria. Stat Med 8: 431–440

    Article  Google Scholar 

  • Pryseley A, Tilahun A, Alonso A, Molenberghs G (2007) Information-theory based surrogate marker evaluation from several randomized clinical trials with continuous true and binary surrogate endpoints. Clin Trials 4: 587–597

    Article  Google Scholar 

  • Renard D, Geys H, Molenberghs G, Burzykowski T, Buyse M (2002) Validation of surrogate endpoints in randomized trials with discrete outcomes. Biom J 30: 1–15

    MATH  MathSciNet  Google Scholar 

  • Renard D, Geys H, Molenberghs G, Burzykowski T, Buyse M, Vangeneugden T, Bijnens L (2003) Validation of a longitudinally measured surrogate marker for a time-to-event endpoint. Appl Stat 30: 235–247

    Article  MATH  MathSciNet  Google Scholar 

  • Sargent DJ, Wieand HJ, Haller DG, Gray R (2003) Disease-free survival versus overall survival as a primary endpoint for adjuvant colon cancer studies: individual patient data from 20,898 patients on 18 randomized trails. J Clin Oncol 23: 8664–8670

    Article  Google Scholar 

  • Schemper M, Stare J (1996) Explained variation in survival analysis. Stat Med 15: 1999–2012

    Article  Google Scholar 

  • Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423 and 623–656

    Google Scholar 

  • Szilárd L (1929) On the decrease in entropy in a thermodynamic system by the intervention of intelligent beings. Z Phys 53: 840–856

    Article  Google Scholar 

  • Tibaldi FS, Cortiñas Abrahantes J, Molenberghs G, Renard D, Burzykowski T, Buyse M, Parmar M, Stijnen T, Wolfinger R (2003) Simplified hierarchical linear models for the evaluation of surrogate endpoints. J Stat Comput Simul 73: 643–658

    Article  MATH  MathSciNet  Google Scholar 

  • Tilahun A, Assam P, Alonso A, Molenberghs G (2007) Flexible surrogate marker evaluation from several randomized clinical trials with continuous endpoints, using R and SAS. Comput Stat Data Anal 51: 4152–4163

    Article  MATH  Google Scholar 

  • Xu R, O’Quigley J (1999) A measure of dependence for proportional hazards models. J Nonparametr Stat 12: 83–107

    Article  MathSciNet  Google Scholar 

  • Xu R, O’Quigley J (2000) Proportional hazards estimate of the conditional survival function. J R Stat Soc B 62: 667–680

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert Molenberghs.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pryseley, A., Tilahun, A., Alonso, A. et al. An information-theoretic approach to surrogate-marker evaluation with failure time endpoints. Lifetime Data Anal 17, 195–214 (2011). https://doi.org/10.1007/s10985-010-9185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-010-9185-6

Keywords

Navigation