Skip to main content

Advertisement

Log in

A Corrected Pseudo-score Approach for Additive Hazards Model with Longitudinal Covariates Measured with Error

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

In medical studies, it is often of interest to characterize the relationship between a time-to-event and covariates, not only time-independent but also time-dependent. Time-dependent covariates are generally measured intermittently and with error. Recent interests focus on the proportional hazards framework, with longitudinal data jointly modeled through a mixed effects model. However, approaches under this framework depend on the normality assumption of the error, and might encounter intractable numerical difficulties in practice. This motivates us to consider an alternative framework, that is, the additive hazards model, about which little research has been done when time-dependent covariates are measured with error. We propose a simple corrected pseudo-score approach for the regression parameters with no assumptions on the distribution of the random effects and the error beyond those for the variance structure of the latter. The estimator has an explicit form and is shown to be consistent and asymptotically normal. We illustrate the method via simulations and by application to data from an HIV clinical trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Andersen PK, Gill RD (1982) Cox’s regression model for counting processes: a large sample study. Ann Stat 10:1100–1120

    MathSciNet  Google Scholar 

  • Breslow NE, Day NE (1980) Statistical methods in cancer research, Vol. 1, The design and analysis of case-control studies. IARC, Lyon

  • Breslow NE, Day NE (1987) Statistical methods in cancer research, Vol. 2, The design and analysis of cohort studies. IARC, Lyon

  • Bycott P, Taylor J (1998) A comparison of smoothing techniques for CD4 data measured with error in a time-dependent cox proportional hazards model. Stat Med 17:2061–2077

    Article  Google Scholar 

  • Carroll RJ, Ruppert D, Stefanski LA (1995) Measurement error in nonlinear models. Chapman and Hall, London

    Google Scholar 

  • Davidian M, Gallant AR (1993) The nonlinear mixed effects model with a smooth random effects density. Biometrika 80:475–488

    MathSciNet  Google Scholar 

  • DeGruttola V, Tu XM (1994) Modeling progression of CD-4 lymphocyte count and its relationship to survival time. Biometrics 50:1003–1014

    Google Scholar 

  • Diggle PJ, Heagerty PJ, Liang K-Y, Zeger SL (2002) Analysis of longitudinal data. Oxford, New York

    Google Scholar 

  • Faucett CJ, Thomas DC (1996) Simultaneously modeling censored survival data and repeatedly measured covariates: a Gibbs sampling approach. Stat Med 15:1663–1685

    Article  Google Scholar 

  • Hammer SM, Katezstein DA, Hughes MD, Gundaker H, Schooley RT, Haubrich RH, Henry WK, Lederman MM, Phair JP, Niu M, Hirsch MS, Merigan TC, for the AIDS Clinical Trials Group Study 175 Study Team (1996) A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. New England J Med 335:1081–1089

    Article  Google Scholar 

  • Henderson R, Diggle P, Dobson A (2000) Joint modeling of longitudinal measurements and event time data. Biostatistics 4:465–480

    Google Scholar 

  • Kulich M, Lin DY (2000) Additive hazards regression with covariate measurement error. J Am Stat Assoc 95:238–248

    MathSciNet  Google Scholar 

  • Lin H, McCulloch CE, Mayne ST (2002) Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Stat Med 21:2369–2382

    Google Scholar 

  • Lin DY, Yin Z (1994) Semiparametric analysis of the additive risk model. Biometrika 81:61–71

    MathSciNet  Google Scholar 

  • Pawitan Y, Self S (1993) Modeling disease marker processes in AIDS. J Am Stat Assoc 83:719–726

    Google Scholar 

  • Schluchter MD (1992) Methods for the analysis of informatively censored longitudinal data. Stat Med 11:1861–1870

    Google Scholar 

  • Song X, Davidian M, Tsiatis AA (2002a) An estimator for the proportional hazards model with multiple longitudinal covariates measured with error. Biostatistics 3:511–528

    Article  Google Scholar 

  • Song X, Davidian M, Tsiatis AA (2002b) A semiparametric likelihood approach to joint modeling of longitudinal and time-to-event data. Biometrics 58:742–753

    Article  MathSciNet  Google Scholar 

  • Tsiatis AA (1981) A large sample study of cox’s regression model. Ann Stat 9:93–108

    MATH  MathSciNet  Google Scholar 

  • Tsiatis AA, DeGruttola V, Wulfsohn MS (1995) Modeling the relationship of survival to longitudinal data measured with error: applications to survival and CD4 counts in patients with AIDS. J Am Stat Assoc 90:27–37

    Google Scholar 

  • Tsiatis AA, Davidian M (2001) A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88:447–458

    Article  MathSciNet  Google Scholar 

  • Wulfsohn MS, Tsiatis AA (1997) A joint model for survival and longitudinal data measured with error. Biometrics 53:330–339

    MathSciNet  Google Scholar 

  • Xu J, Zeger SL (2001) Joint analysis of longitudinal data comprising repeated measures and times to events. Appl Stat 50:375–387

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH Grants CA90747, AI29168 (Huang) and U01-AI46702 (Song), and career development funds from the University of Washington Department of Biostatistics (Song). Part of this work was done when the second author was associate member at the Fred Hutchinson Cancer Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Song.

Appendix: large sample properties of \(\hat{\varvec{\beta}}\)

Appendix: large sample properties of \(\hat{\varvec{\beta}}\)

For now, we assume the vector of error variances \(\varvec{\xi}\) is known. Then \(\hat{\varvec{\beta}}\) satisfies \(\hat{\bf U}(\hat{\varvec{\beta}},\varvec{\xi}_0)=0.\) First, we show the consistency of \(\hat{\varvec{\beta}}.\) Let B be a compact set including \(\varvec{\beta}_0\) as an internal point. Since \(\hat{\bf U}(\varvec{\beta}, \varvec{\xi})=\tilde{\bf U}(\varvec{\beta};\hat{\bf X})+n^{-1} \sum_{i=1}^n\int_0^\tau{\bf H}_i(u,\varvec{\xi})\varvec{\beta} du\), using the empirical mean operator \(\hat{\mathcal E}\), at \(\varvec{\xi}=\varvec{\xi}_0\), (7) can be rewritten as

$$\eqalign{\hat{\bf U}(\varvec{\beta},\varvec{\xi}_0)=& \int_{0}^{\tau}\left(d\hat{\mathcal E}\left\{\hat{\bf S}(u) N(u)\right\} -\hat{\mathcal E}\left\{{{d\hat{\bf S}(u)}\over{du}} N(u)\right\} du-\hat{\mathcal E}\left\{Y(u)\hat{\bf S}(u)\hat{\bf S}^T(u)\varvec{\beta} \right\} du\right. \cr&-{\hat{\mathcal E}\left\{ Y(u)\hat{\bf S}(u) \right\}\over\hat{\mathcal E} \left\{Y(u)\right\}}\left[ d\hat{\mathcal E}\left\{N(u)\right\}-\hat{\mathcal E}\left\{Y(u)\hat{\bf S}^{T}(u) \varvec{\beta}\right\} du\right]\cr & \left.\kern-70pt\phantom{\left\{{{d\hat{\bf S}(u)}\over{du}} N(u)\right\}}+\hat{\mathcal E}\{Y(u){\bf H}(u,\varvec{\xi}_0)\varvec{\beta}\}du\right).}$$
(11)

Under condition B, it is easy to show that

$$ \begin{array}{ll} \hbox{E}\left[\sup\limits_{u\in[0,\tau]}{\bf S}^{T}(u){\bf S}(u)\right]<\infty,& \hbox{E}\left[\sup\limits_{u\in[0,\tau]}{d{\bf X}^T(u)\over du} {d{\bf X}(u)\over du}\right] <\infty,\cr \hbox{E}\left[\sup\limits_{\mathop{u\in[0,\tau]}\limits_{\varvec{\beta}\in {\mathcal B}}}\{{\bf S}^{T}(u)\varvec{\beta} \}^{2}\right]<\infty,&\hbox{E}\left[\sup\limits_{\mathop{u\in[0,\tau]}\limits_{\varvec{\beta}\in {\mathcal B}}}\{{\bf S}^{T}(u)\varvec{\beta}\}^{2}{\bf S}^{T}(u){\bf S}(u)\right]<\infty,\cr \hbox{E}\left[\sup\limits_{\mathop{u\in[0,\tau]}\limits_{\varvec{\beta}\in {\mathcal B}}}\left\{\varvec{\beta}^{T}H^T(u,\varvec{\xi}_0){\bf H}(u,\varvec{\xi}_0)\varvec{\beta}\right\}\right]<\infty,& \end{array} $$

and condition A implies that E{Y(u)} is bounded away from zero for u [0,τ]. Hence, by using the extended law of large numbers in Appendix III of Anderson and Gill (1982), the empirical processes in (11) converge almost surely to their limits uniformly in u [0,τ] and \(\varvec{\beta}\in{\mathcal B}\) and hence \(\hat{\bf U}(\varvec{\beta},\varvec{\xi}_0)\) converges uniformly to \({\bf U}(\varvec{\beta};{\bf X})\) in \(\varvec{\beta}\in{\mathcal B}.\) Since \(\hat{\bf U}(\varvec{\beta},\varvec{\xi}_0)\) and \({\bf U}(\varvec{\beta};{\bf X})\) are linear functions of \(\varvec{\beta}\) and \({\bf U}(\varvec{\beta}_0;{\bf X})=0,\) the consistency of \(\hat{\varvec{\beta}}\) follows.

Next, we show that \(n^{1/2}\{\hat{\bf U}(\varvec{\beta}_0,\varvec{\xi}_0)-{\bf U}(\varvec{\beta}_0;{\bf X})\}\) converges to a normal distribution. Let \(\varvec{\Lambda}(u,\varvec{\beta},\varvec{\xi}_0)\) denote the vector composed of the empirical processes in (11). Following the proof of Lemma 5.1 in Tsiatis (1981), under condition B, \(n^{1/2}[\varvec{\Lambda}(u,\varvec{\beta}_0,\varvec{\xi}_0)-\hbox{E} \{\varvec{\Lambda}(u,\varvec{\beta}_0,\varvec{\xi}_0)\}]\) converges to a Gaussian process. Coupled with \(\hat{\bf U}(\varvec{\beta}_0,\varvec{\xi}_0)\) being Hadamard differentiable as a functional of \(\varvec{\Lambda}\), the asymptotic normality of \(n^{1/2}\hat{\bf U}(\varvec{\beta}_0,\varvec{\xi}_0)\) follows by the functional delta method. Using the functional Taylor expansion, with some algebra, we can show that

$$ n^{1/2}\hat{\bf U}(\varvec{\beta}_0,\varvec{\xi}_0)=n^{-1/2} \sum_{i=1}^{n}\varvec{\omega}_{i}(\varvec{\beta}_0,\varvec{\xi}_0) +o_{p}(1), $$
(12)

where

$$ \eqalign{\varvec{\omega}_{i}(\varvec{\beta},\varvec{\xi}) =&\int_{0}^{\tau}\left(\left[\hat{\bf S}_{i}(u)-{\hbox{E}\left\{Y(u)\hat{\bf S}(u)\right\}\over \hbox{E}\left\{Y(u)\right\}} \right]\left\{dN_{i}(u)-Y_{i}(u)\hat{\bf S}_{i}^{T}(u) \varvec{\beta} du\right\}\right. \cr &-\left[{Y_{i}(u)\hat{\bf S}_{i}(u)\over \hbox{E}\left\{Y(u)\right\}}-{Y_{i}(u)\hbox{E}\left\{Y(u)\hat{\bf S}(u)\right\}\over \hbox{E}^{2}\left\{Y(u)\right\}}\right]\hbox{E} \left[dN(u)-Y(u)\hat{\bf S}^{T}(u)\varvec{\beta} du\right] \cr &\left.+Y_i(u){\bf H}_i(u,\varvec{\xi})\varvec{\beta} du\right).} $$

By the central limit theorem, \(n^{1/2}\left\{\hat{\bf U}(\varvec{\beta}_0,\varvec{\xi}_0)-{\bf U}(\varvec{\beta}_0;{\bf X})\right\}\) converges to a normal distribution with mean 0 and variance \(\Omega(\varvec{\beta}_0,\varvec{\xi}_0)=\hbox{var}\{\varvec{\omega}_{i} (\varvec{\beta}_0,\varvec{\xi}_0)\}\). By empirical processes theory, we can show that \(\hat{\Omega}(\varvec{\beta},\varvec{\xi}_0)=n^{-1}\sum_{i=1}^n \left\{\hat{\varvec{\omega}_i}(\varvec{\beta},\varvec{\xi}_0) -\overline{\hat{\varvec{\omega}}}(\varvec{\beta}, \varvec{\xi}_0)\right\}^{\otimes 2}\) converges almost surely to \(\Omega(\varvec{\beta},\varvec{\xi}_0)\) uniformly in \(\varvec{\beta}\in{\mathcal B}\), where \(\overline{\hat{\varvec{\omega}}}(\hat{\varvec{\beta}}, \varvec{\xi})=\hat{\mathcal E}\{\hat{\varvec{\omega}} (\hat{\varvec{\beta}},\varvec{\xi})\}\). With simple algebra, we can show \(\hat{\Omega}(\hat{\varvec{\beta}},\varvec{\xi}_0)=n^{-1}\sum_{i=1}^n \hat{\varvec{\omega}}_i(\hat{\varvec{\beta}},\varvec{\xi}_0) \hat{\varvec{\omega}}_i^T(\hat{\varvec{\beta}},\varvec{\xi}_0)\).

Since \(\hat{\bf U}(\varvec{\beta},\varvec{\xi})\) is a linear function of \(\varvec{\beta}\),

$$ 0=n^{1/2}\hat{\bf U}(\hat{\varvec{\beta}},\varvec{\xi}_0)=n^{1/2} \hat{\bf U}(\varvec{\beta}_{0},\varvec{\xi}_0)-\hat{\varvec{\Gamma}}(\varvec{\xi}_0) n^{1/2}(\hat{\varvec{\beta}}-\varvec{\beta}_0 ), $$

where

$$ \eqalign{\hat{\varvec{\Gamma}}(\varvec{\xi})&=-{\partial\hat{\bf U}(\varvec{\beta},\varvec{\xi})\over \partial \varvec{\beta}}=n^{-1}\sum_{i=1}^n\int_0^\tau\left(Y_{i}(u) \left[\left\{\hat{\bf S}_{i}(u)-\overline{\hat{\bf S}}(u) \right\}^{\otimes 2}-{\bf H}_{i}(u,\varvec{\xi})\right]\right)du \cr &=\int_0^\tau \left[\hat{\mathcal E}\left\{Y(u)\hat{\bf S}(u) \hat{\bf S}^T(u)\right\}-{\hat{\mathcal{E}}\left\{Y(u)\hat{\bf S}(u) \right\}\hat{\mathcal{E}}\left\{Y(u)\hat{\bf S}^T(u)\right\}\over \hat{\mathcal{E}}\left\{Y(u)\right\}}- \hat{\mathcal{E}}\left\{Y(u){\bf H}(u,\varvec{\xi})\right\}\right]du.} $$

By the extended strong law of large numbers, \(\hat{\varvec{\Gamma}}(\varvec{\xi})\) converges almost surely to

$$ \eqalign{\varvec{\Gamma}(\varvec{\xi})=&\int_0^\tau \left[\hbox{E}\left\{Y(u)\hat{\bf S}(u)\hat{\bf S}^T(u)\right\}-{\hbox{E}\left\{Y(u)\hat{\bf S}(u)\right\} \hbox{E}\left\{Y(u)\hat{\bf S}^T(u)\right\}\over \hbox{E}\left\{Y(u)\right\}}\right. \cr &\left.-\hbox{E}\left\{Y(u){\bf H}(u,\varvec{\xi})\right\}\right]du} $$

uniformly in a neighborhood of \(\varvec{\xi}_0\). It is easy to show that \(\varvec{\Gamma}(\varvec{\xi}_0)=\varvec{\Gamma}_0\). Thus, under condition C, the asymptotic normality of \(n^{1/2}(\hat{\varvec{\beta}}-\varvec{\beta}_0)\) follows from that of \(n^{1/2}\hat{\bf U}(\varvec{\beta}_{0},\varvec{\xi}_0)\) with asymptotic variance \(\Sigma (\varvec{\beta}_{0})=\varvec{\Gamma}_0^{-1}\Omega (\varvec{\beta}_{0},\varvec{\xi}_0)\left\{\varvec{\Gamma}_0^{-1} \right\}^{T}\). An estimator for \(\Sigma(\varvec{\beta}_0)\) is \(\hat{\Sigma}(\hat{\varvec{\beta}})=\hat{\varvec{\Gamma}} (\varvec{\xi}_0)^{-1}\hat{\Omega}(\hat{\varvec{\beta}},\varvec{\xi}_0) \left\{\hat{\varvec{\Gamma}}(\varvec{\xi}_0)^{-1}\right\}^{T}\). The consistency of \(\Sigma(\varvec{\beta}_0)\) then follows from the almost sure convergence of \(\hat{\Omega}(\varvec{\beta},\varvec{\xi}_0)\) uniformly in \(\varvec{\beta}\in \mathcal{B}\).

When \(\varvec{\xi}\) is unknown, following Song et al. (2002a), \(\hat{\varvec{\xi}}\) is a consistent estimator of \(\varvec{\xi}_0\) under condition D. Now \(\hat{\varvec{\beta}}\) is obtained by replacing \(\varvec{\xi}\) with \(\hat{\varvec{\xi}}\) in (8), the denominator of which is equal to \(n\hat{\varvec{\Gamma}}(\hat{\varvec{\xi}})\). It has been shown that \(\hat{\varvec{\Gamma}}(\hat{\varvec{\xi}})\) converges almost surely to \(\varvec{\Gamma}(\varvec{\xi})\) uniformly in a neighborhood of \(\varvec{\xi}_0\). This, together with the continuity of \(\varvec{\Gamma}(\varvec{\xi})\) and consistency of \(\hat{\varvec{\xi}}\), implies that \(\hat{\varvec{\Gamma}}(\hat{\varvec{\xi}})\) converges to \(\varvec{\gamma}_0\). The consistency of \(\hat{\varvec{\beta}}\) then follows. Using arguments similar to those when \(\varvec{\xi}\) is known, we can show that \(n^{1/2}\left\{(\hat{\varvec{\beta}}^T,\hat{\varvec{\xi}}^T)^T -(\varvec{\beta}_0^T,\varvec{\xi}_0^T)^T\right\}\) converges to a normal distribution with variance V=A−1B{A−1}T, where \({\bf A}=\hbox{E}\left\{\partial{\varvec{\Phi}(\varvec{\beta}_0,\varvec{\xi}_0)}/ \partial{(\varvec{\beta}^T,\varvec{\xi}^T)}\right\}\) and \({\bf B}=\hbox{var}\{{\varvec{\varphi}}^\ast(\varvec{\beta}_0,\varvec{\xi}_0)\}\), \(\varvec{\varphi}_i^{\ast}(\varvec{\beta}_0,\varvec{\xi}_0) =\{\varvec{\omega}_i^T(\varvec{\beta}_0,\varvec{\xi}_0),{\bf h}_i^T(\varvec{\beta}_0,\varvec{\xi}_0)\}^T\), and V is consistently estimated by \(\hat{\bf V}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Huang, Y. A Corrected Pseudo-score Approach for Additive Hazards Model with Longitudinal Covariates Measured with Error. Lifetime Data Anal 12, 97–110 (2006). https://doi.org/10.1007/s10985-005-7222-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-005-7222-7

Keywords

Navigation